BUILDING PERFORMANCE

Consultation document Building Code update 2022 **Plumbing and drainage**

Issuing and amending acceptable solutions and verification methods

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Te Kāwanatanga o Aotearoa New Zealand Government

Ministry of Business, Innovation and Employment (MBIE)

Hīkina Whakatutuki – Lifting to make successful

MBIE develops and delivers policy, services, advice and regulation to support economic growth and the prosperity and wellbeing of New Zealanders.

CONTACT DETAILS

PO Box 1473, Wellington 6140 | T 0800 242 243 | E info@building.govt.nz For more information, visit building.govt.nz

DISCLAIMER

Disclaimer: The opinions and proposals in this consultation document are those of the Ministry of Business, Innovation and Employment (MBIE) and do not necessarily reflect government policy. MBIE does not accept any responsibility or liability whatsoever whether in contract, tort (including negligence), equity or otherwise for any action taken as a result of reading, or for reliance on, any or all of the information contained in this document, or for any error, inadequacy, flaw in, or omission from this document.

ISBN 978-1-99-102262-2 (online)

May 2022

©Crown Copyright

The material contained in this report is subject to Crown copyright protection unless otherwise indicated. The Crown copyright protected material may be reproduced free of charge in any format or media without requiring specific permission. This is subject to the material being reproduced accurately and not being used in a derogatory manner or in a misleading context. Where the material is being published or issued to others, the source and copyright status should be acknowledged. The permission to reproduce Crown copyright protected material does not extend to any material in this report that is identified as being the copyright of a third party. Authorisation to reproduce such material should be obtained from the copyright holders

Contents

Prefa	ace	. 4
Seek	ing feedback on plumbing and drainage	. 5
Plum	bing and drainage update	. 7
Plum	bing and drainage update timeline	. 9
1.	Lead in plumbing products	10
2.	Water temperatures	15
3.	Protection of potable water	21
4.	AS/NZS 3500 Plumbing and drainage standards	28
5.	Water supply system components	33
6.	Plumbing and drainage system material standards	42
7.	Resolving conflicts and editorial changes	46
	endix A. Proposed changes to the acceptable solutions and verification methods for clause E1 Surface	48
	endix B. Proposed changes to the acceptable solutions and verification methods for clause G12 Water lies	49
	endix C. Proposed changes to the acceptable solutions and verification methods for clause G13 Foul Wate	

Preface

The Building Code forms a key part of our building regulatory system in New Zealand. It sets the minimum performance for the design of buildings. The Ministry of Business, Innovation and Employment (MBIE) is responsible for updating the Building Code and its documents so we can keep pace with innovation, current construction methods and the needs of contemporary New Zealand.

At MBIE, we aim for a balance between setting minimum performance requirements where necessary to ensure buildings are safe, healthy and durable, and encouraging higher standards of performance where this will impact positively on outcomes for the country. The changes we are proposing aim to ensure new buildings better protect the safety of the people who use them.

This consultation document includes the details of the plumbing and drainage proposals which aim to improve the safety and reliability of new plumbing systems. This includes changes to the Building Code compliance pathways for water supply, foul water and surface water systems. These proposals are the latest in a series of continuous improvements intended to support plumbing and drainage work and ensure these Building Code compliance pathways are fit for purpose and up to date.

Altogether, the changes aim to give New Zealanders greater confidence that water from a tap is healthy and safe.

Our counterparts at the Australian Building Code Board have been instrumental in supporting the development of these proposals, leading the way on their ambitious work programme to introduce new plumbing requirements across the Tasman. We have drawn on their research and collaborated with our colleagues at the Ministry of Health and Taumata Arowai, New Zealand's new dedicated water regulator, to inform this document.

Please take the time to let us know your thoughts. MBIE will carefully consider and weigh all submissions before making any decisions. You can provide feedback by following the instructions on <u>MBIE's Have Your Say</u> webpage.

Final decisions on the changes will be made and communicated later this year.

Seeking feedback on plumbing and drainage proposals

In this consultation, we seek your feedback on the following proposals:

Proposal 1. Lead in plumbing products

Proposal 2. Water temperatures

Proposal 3. Protection of potable water

Proposal 4. AS/NZS 3500 Plumbing and drainage standards

Proposal 5. Water system supply components

Proposal 6. Plumbing and drainage system material standards

Proposal 7. Resolving conflicts and editorial changes

How to provide feedback

We invite you to submit feedback on the Building Code update by 5:00pm on Friday, 1 July 2022.

- > You can provide your feedback by completing a survey online via MBIE's Have Your Say webpage, or
- > You can download a form at <u>www.mbie.govt.nz</u> and send it to us by email or post.
 - Email to: <u>buildingfeedback@mbie.govt.nz</u>, with subject line Building Code consultation 2022
 - Post to:

Building System Performance Ministry of Business, Innovation and Employment PO Box 1473 Wellington 6140

Your feedback will contribute to further development of the Building Code.

Release of information

MBIE may publish copies or excerpts of submission to MBIE's website at <u>www.mbie.govt.nz</u>. MBIE will consider you to have consented to publishing by making a submission, unless you clearly specify otherwise in your submission.

If your submission contains any information that is confidential or you otherwise wish us not to publish it, please:

- > indicate this at the start of your submission, with any confidential information clearly marked within the text
- > provide a separate version excluding the relevant information for publication on our website.

Submissions will also become official information, which means it may be requested under the <u>Official</u> <u>Information Act 1982</u> (OIA). The OIA specifies that information is to be made available upon request unless there are sufficient grounds for withholding it. If we receive a request, we cannot guarantee that feedback you provide us will not be made public. Any decision to withhold information requested under the OIA is reviewable by the Ombudsman. If you have any objection to the release of any information in the submission, and in particular, which parts you consider should be withheld, please set this out in your submission together with the reasons for withholding the information. MBIE will take such objections into account and will consult with submitters when responding to requests under the Official Information Act 1982.

Private information

<u>The Privacy Act 2020</u> establishes certain principles with respect to the collection, use and disclosure of information about individuals by various agencies, including MBIE. Any personal information you supply to MBIE in the course of making a submission will only be used for the purpose of assisting in the development of advice in relation to this consultation or for contacting you about your submission. We may also use personal information you supply in the course of making a submission for other reasons permitted under the Privacy Act 2020 (e.g. with your consent, for a directly related purpose, or where the law permits or requires it). Please clearly indicate in your submission if you do not wish your name, or any other personal information, to be included in any summary of submissions that MBIE may publish.

We will only retain personal information as long as it is required for the purposes for which the information may lawfully be used. Where any information provided (which may include personal information) constitutes public records, it will be retained to the extent required by the <u>Public Records Act 2005</u>. We may also be required to disclose information under the Official Information Act 1982, to a Parliamentary Select Committee or Parliament in response to a Parliamentary Question. You have rights of access to and correction of your personal information which can be found on the MBIE website at <u>www.mbie.govt.nz</u>.

Plumbing and drainage – Long term strategy

This year we are proposing changes to the New Zealand Building Code (Building Code) compliance pathways for water supplies, foul water and surface water that support plumbing and drainage work in New Zealand.

These proposals are the latest in a series of continuous improvements to ensure the Building Code compliance pathways for the plumbing sector are fit for purpose and up to date to help New Zealanders have safe and reliable plumbing systems.

This update will help support the provision of plumbing and drainage services that comply with the Building Code and meet the safety and wellbeing objectives in the <u>Building Act 2004</u>.

The 2022 Plumbing and drainage update is focused on improving the means of complying with the following three Building Code clauses:

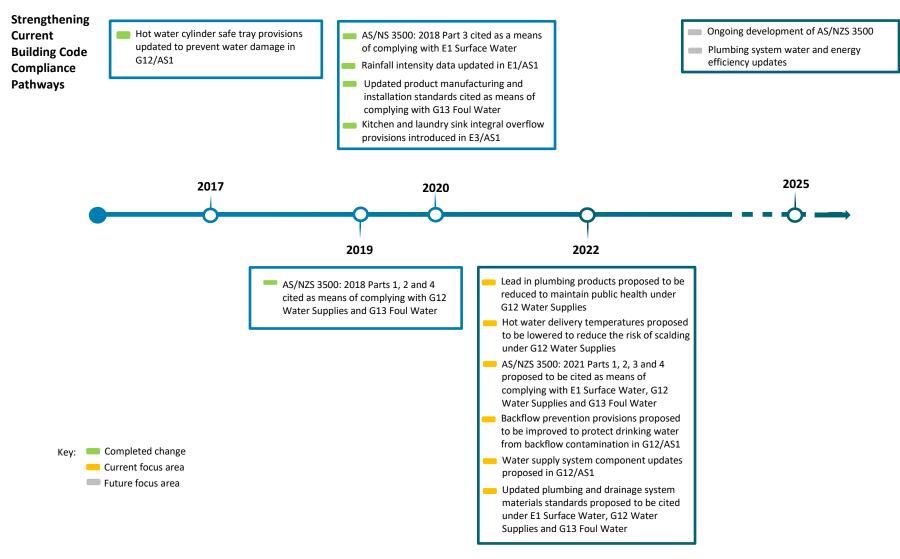
- > E1 Surface Water Disposal of rainwater and confirmation surface water cannot enter the building.
- > G12 Water Supplies Requires the safe supply, storage, reticulation and delivery of hot and cold water.
- > G13 Foul Water Requires the safe disposal of foul water to prevent illness and the loss of amenity due to odour and accumulated matter.

代 (語) 4 MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT 中的いる water/07/07/07		MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT
Acceptable Solutions and Verification Methods For New Zealand Building Code Clause E1 Surface Water	Acceptable Solutions and Verification Methods For New Zealand Building Code Clause G12 Water Supplies	Acceptable Solutions and Verification Methods For New Zealand Building Code Clause G13 Foul Water
	G12	G13

This update supports MBIE's commitment to the ongoing development of technical Building Code solutions within the plumbing technical focus area, and is a key step towards:

- Modernising the compliance pathways for the plumbing sector to incorporate technical innovation and research which support current hydraulic theory and installation practices.
- > Promoting consistent outputs by improving alignment between Building Code compliance pathways for the plumbing sector.
- > Addressing targeted technical issues and gaps within existing compliance pathways.

At the same time, other government legislative programmes are informing the work required in the plumbing and drainage space. These include:


- New Zealand Government's response to climate change and the <u>Climate Change Response (Zero Carbon)</u> <u>Amendment Act 2019</u> which drives our climate change policy towards low greenhouse gas emissions (emissions) and climate resilience in New Zealand.
- Three Waters Reform Programme including the introduction of the <u>Water Services Act 2021</u> which will help ensure all New Zealanders have safe, reliable drinking water, wastewater and stormwater services.
- Building Products Information Law changes which will ensure that basic information about building products and how to use them is available to users in New Zealand.

One of the challenges is that plumbing and drainage requirements in the Building Code are fragmented between various Building Code clauses, acceptable solutions and verification methods. This makes it challenging to ensure designs and installations comply with all relevant aspects of the Building Code. There are opportunities to improve consistency, clarity and certainty in these requirements and create a more user centric approach to address the issues.

Along with that, we have recognised the importance of the standards cited for plumbing and drainage systems and have looked to adopt the most recent version of these standards. Building Code compliance relies heavily on cited standards for the compliance of pipe materials and plumbing and drainage system installations. This is reflected in the priorities and focus of past updates which have focused on maintaining current citation of a number of standards.

The timeline on the next page illustrates how we propose to continuously improve compliance pathways for the plumbing sector and embed operational efficiency and carbon reduction approaches into the building system's regulatory framework over time. At this stage, this timeline is indicative and subject to amendment based on government decisions and sector feedback. It will be built on and finalised to provide the sector with early and clear signals about future changes.

Plumbing and drainage update timeline

1. Lead in plumbing products

We are proposing to limit the allowable lead content in plumbing products which contain copper alloys and are intended for use in contact with drinking water to not more than 0.25%. These new requirements are proposed for inclusion in the acceptable solutions for Building Code clause G12 Water Supplies. The transition period is proposed to end on 1 September 2025 to provide plumbing product manufacturers and suppliers time to make the necessary changes.

1.1. Reasons for the change

The use of lead in the manufacture of plumbing products has been common practice for many centuries. It is most commonly found in copper alloys, such as brass and bronze, where a small amount of lead is added to provide malleability. These alloys are frequently used as components of plumbing products in contact with drinking water.

In New Zealand, small amounts of lead are currently allowed in the raw materials used to manufacture some plumbing products, provided it does not contaminate the water. Products that contaminate drinking water are not code compliant.

Lead has long been recognised as a cumulative toxin and people can be exposed to lead from ingestion of airborne dust, water, food and soil. While existing products that comply with the Building Code are safe, health officials recommend that where possible, exposure to lead should be reduced. The World Health Organisation (WHO) also recommends all practical measures to reduce exposure to lead should be implemented, including the use of low lead alloy fittings in new plumbing installations or repairs¹.

Australia has recently announced changes to limit the allowable level of lead in plumbing products². This step aligns closely with existing lead-free plumbing products requirements in North America. As such, this is a timely opportunity for New Zealand to adopt similar requirements. In this consultation, we are seeking feedback on whether New Zealanders would support this move to continue to reduce the amount of lead in our built environment.

1.2. Proposed change

The proposed change includes:

- Limiting the maximum lead content to 0.25% for any product that contains copper alloy and is intended for use in contact with potable water for human consumption. This would include products such as pipe fittings, valves, taps, mixers, water heaters and water meters. See example images of these products in Figure 1.1.
- > Requiring the lead content for these products be verified through a test report from an accredited laboratory in accordance with the standard NSF/ANSI/CAN 372.
- > Providing a transition period to 1 September 2025 which aligns with the time when equivalent requirements will come into force in Australia.
- Clarifying that copper alloy plumbing products must be suitably resistant to premature corrosion from dezincification.

The proposed requirements will involve an amendment to Building Code Acceptable Solution G12/AS1 Water Supplies. This proposed change will not affect existing plumbing systems unless they are being altered or replaced. However, it would apply to all new plumbing work even if it does not need a building consent.

¹ WHO Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum

² ABCB Lead in plumbing products - Final Decision RIS

For more details on the specifics of the proposed change, please refer to Appendix B.

FIGURE 1.1: Examples of plumbing products such as taps and brass fittings affected by this proposal

1.3. Options considered

For this proposal, MBIE has considered the following two options against the status quo:

Option 1. Propose changes to the current plumbing product testing standard (AS/NZS 4020)

This option considered proposing changes to the maximum allowable concentration of lead within the joint Australian/New Zealand standard AS/NZS 4020 for the testing of products for use in contact with drinking water.

Option 2. Require all products in contact with drinking water to contain 0.25% or less lead content

This option considered amending the Acceptable Solution G12/AS1 to restrict the maximum allowable lead content within plumbing products that contain copper alloy and are intended for use in contact with potable water for human consumption to 0.25% or less when calculated using a weighted average against the wetted surface area and evaluated against NSF/ANSI/CAN 372: 2020 Drinking Water System Components - Lead Content. This option would closely align requirements under the Building Code with changes being introduced in Australia and existing requirements for lead free plumbing products in North America.

1.4. Analysis of the proposed change

1.4.1. Objectives of the proposal

The primary objective of this proposal is to further reduce the potential for exposure to lead from plumbing products that are in contact with potable water. While existing products that comply with the Building Code are safe, health officials recommend that exposure to lead should be reduced, where possible. This contributes to achieving Objective G12.1 (a) of the Building Code, Functional requirement G12.2 and

Performance criteria G12.3.2 (c). These clauses of the Building Code state:

Objective

- G12.1 The objective of this provision is to-
 - (a) safeguard people from illness caused by contaminated water.

Functional requirement

G12.2 Buildings provided with water outlets, sanitary fixtures or sanitary appliances must have safe and adequate water supplies.

Performance

G12.3.2 A potable water supply system shall be-

(c) installed using components that will not contaminate the water.

1.4.2. Methodology to determine the allowable levels of lead

The current allowable amount of lead varies depending on the plumbing product and is regulated under the Building Code through both manufacturing standards and via the adoption of the Australian and New Zealand standard AS/NZS 4020 Testing of Products for Use in Contact with Drinking Water. Lead water levels must not exceed 10 micrograms (μ g) per litre (L) of water when tested in accordance with this standard. Products that comply with this standard have been tested to ensure the maximum level of lead leaching from the product does not exceed the maximum acceptable level set by the Drinking Water Standards for New Zealand³.

As part of the analysis, we considered changing the maximum acceptable value for lead leaching from a product within the AS/NZS 4020 standard. However, following consultation with regulators in Australia, industry groups and accredited testing laboratories, several challenges with implementing this option were revealed. This option was discontinued from further analysis on the basis that limiting the allowable proportion of lead in the source material (Option 2) was considered to address the issue more effectively when compared to reducing the allowable level of lead leaching from a product into drinking water.

We determined that amending Acceptable Solution G12/AS1 as outlined in Option 2 was the most effective way in which to further limit lead in new plumbing installations. The proposed approach to reducing the maximum lead content in plumbing products was discussed with various parties including health officials, Australian regulators, industry groups, product suppliers and accredited product testing laboratories. This option was identified as the most reasonable option for reducing the potential for exposure to lead from plumbing products in contact with potable water.

This approach includes:

- > Limiting the maximum lead content to 0.25% for any product that contains copper alloy and is intended for use in contact with potable water for human consumption.
- > Using the standard NSF/ANSI/CAN 372: 2020 Drinking Water System Components Lead Content to calculate the allowable lead content based on a weighted average against the wetted surface area.

The limit is proposed to be set at 0.25% weighted average in recognition that it is not always possible to source 100% lead-free raw material. This also ensures parity with the international market for lead free copper alloy plumbing products.

1.4.3. Impacts of the proposed change

There are a number of product categories impacted by this option and these categories include subsets of many product types ranging in size and value.

Costs and benefits of the changes were assessed qualitatively. MBIE expects the following from this change:

- > Limiting the allowable lead levels will further reduce the risk of exposure to lead from plumbing system components.
- Introducing this change in alignment with Australia is expected to result in limited cost increases for plumbing product manufacturers and suppliers in New Zealand, as most of the affected products are also supplied into the Australian market.
- This proposed change will continue to support the wider government Three Waters Reform objective of ensuring safe, reliable drinking water supplies.

As part of the options, we also considered what the transition period for this change should be. For the different transition periods, MBIE expects the following impacts from this change:

³ Drinking-water Standards for New Zealand

- With a Shorter transition period Manufacturers and suppliers would not have sufficient time to make the necessary changes to support the availability of products. This could lead to further supply chain constraints which have been heightened due to the Covid-19 pandemic.
- With a Longer transition period This would mean that new buildings could still be constructed with higher levels of lead in the plumbing products. Products unable to be used in Australia could be used in New Zealand.

Aligning the implementation with the timeframe proposed in Australia of 1 September 2025 provides a balance of these factors.

1.5. Transitions

Effective date for G12/AS1 Paragraph 2.1.3: 1 September 2025

Transitional arrangements: 34 months (3 November 2022 to 1 September 2025)

The transition period for this change is proposed to end on 1 September 2025 at the same time as the equivalent requirements G12/AS1 come into force in Australia. This transition period will only apply to the proposed requirement in G12/AS1 Paragraph 2.1.3.

This transition period is proposed to provide manufactures and suppliers time to make the necessary changes support the availability of products in New Zealand.

It is proposed that the existing Acceptable Solution G12/AS1 water quality provisions will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed transition period cessation date) as described in <u>TABLE 1.1</u>.

The proposed transition period of 12 months is intended to align with those for other proposals. This is intended to minimise confusion on the dates that the documents and requirements come into effect. On 2 November 2023, the proposed new G12/AS1 can be used with Paragraph 2.1.3 effective date for a transition period of 34 months. The draft text for this arrangement is provided in <u>Appendix B</u>.

Document	Before 3 November 2022	From 3 November 2022 (effective date) To 2 November2023 (cessation date)	From 2 November 2023 To 1 September 2025	On 1 September 2025
Existing Acceptable	If used, will be	If used, will be	Does not apply to	Does not apply to
Solution G12/AS1	treated as complying	treated as complying	Building Consents	Building Consents
	with the Building	with the Building	issued after this date	issued after this date
	Code	Code		
Amended Acceptable	Does not apply to	If used, will be	If used, will be	Does not apply to
Solution G12/AS1	Building Consents	treated as complying	treated as complying	Building Consents
	issued before this	with the Building	with the Building	issued after this date
	date	Code	Code	
Amended Acceptable	Does not apply to	If used, will be	If used, will be	If used, will be
Solution G12/AS1	Building Consents	treated as complying	treated as complying	treated as complying
Paragraph 2.1.3	issued before this	with the Building	with the Building	with the Building
	date	Code	Code	Code

1.6. Questions for the consultation

- 1-1. Do you support amending Acceptable Solution G12/AS1 as proposed to limit the allowable lead content in plumbing products?
- 1-2. What impacts would you expect on you or your business from the proposed change? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 1-3. What support would you or your business would need to implement the proposed change if introduced?
- 1-4. Do you agree with the proposed transition time of 34 months for these proposed new requirements to take effect on 1 September 2025?
 - \Box Yes, it is about right
 - \Box No, it should be longer (4 years or more)
 - □ No, it should be shorter (less than 34 months)
 - □ Not sure/no preference

2. Water temperatures

We are proposing to reduce the maximum temperature of hot water at the tap to reduce the risk of scalding injuries to New Zealanders. The maximum allowable temperature for most buildings is proposed to be reduced from 55°C to 50°C. For early childhood centres, the maximum allowable temperature is proposed to be reduced from 45°C to 40°C to align with Ministry of Education requirements. The proposed changes would only apply to new plumbing fixtures used for personal hygiene, such as hand basins, baths and showers.

These changes are proposed to be introduced into Building Code Acceptable Solution G12/AS1, along with additional temperature control devices and pressure requirements which will improve alignment with the AS/NZS 3500 plumbing and drainage standards.

2.1. Reasons for the change

Hot water supply must be adequate to meet New Zealanders' needs while also keeping them safe. Currently, the Building Code requires hot water systems to be controlled to prevent the growth of legionella bacteria, which is usually achieved by storing heated water at a temperature of 60°C or higher. However, the Building Code also requires hot water to be provided at a temperature that avoids the likelihood of scalding. We must be cautious about the temperature of water delivered to taps in our homes, to ensure they are safe for everyone to use.

According to the World Health Organisation (WHO), burns are a global public health problem and are particularly common in early childhood⁴. Scalds are the most commonly treated burn injury in young children. Scald injuries may result from exposure to very hot liquids for only a short duration, ie "spill/splash," and also as a result of "immersion" in more moderate temperature liquids for relatively longer durations eg "a bath".

Those most vulnerable from tap water scalds are infants, young children, elderly people and disabled people. The Burns Registry of Australia and New Zealand led a study into people with tap water scalds admitted to Australian or New Zealand burn centres between 2010 and 2019⁵. The study found that 130 people with tap water scalds were admitted to NZ burn centres during the specified period, with 65 per cent of severe tap water scalds occurring in young infants and children under four years old, and over 90 per cent of burns occurring in the bathroom while bathing.

Additionally, the significant difference in maximum allowable hot water temperature in New Zealand (55°C) compared to Australia (50°C) poses an increased risk of deeper immersion scalds. Lowering the maximum delivery temperatures is expected to reduce the number of scald injuries across the country.

2.2. Proposed changes

MBIE is proposing to reduce the maximum temperature of hot water at the tap to reduce the risk of scalding injuries to New Zealanders. This proposed change includes:

- Reducing the maximum allowable temperature of hot water delivered to plumbing fixtures used for personal hygiene in most buildings from 55°C to 50°C.
- Reducing the maximum allowable temperature for early childhood centres from 45°C to 40°C to align with Ministry of Education requirements.
- > Maintaining the current maximum allowable temperature of 45°C for institutions such as schools, hospitals and care homes.

⁴ Burns (who.int)

⁵ <u>The home, the bathroom, the taps, and hot water": The contextual characteristics of tap water scalds in</u> <u>Australia and New Zealand</u>

The proposed maximum temperature changes would only apply to new plumbing fixtures used for personal hygiene, such as hand basins, baths and showers. These changes are proposed to be introduced into Building Code Acceptable Solution G12/AS1, along with additional temperature control devices which will provide more ways to control the delivery temperature of hot water. For more details, please refer to <u>Appendix B</u> for proposed water temperature changes within Acceptable Solution G12/AS1.

FIGURE 2.1: 50°C – Proposed max temperature of hot water delivered to new bathroom fixtures in homes.

2.3. Options considered

To determine options for maximum hot water temperatures, MBIE conducted a review of the maximum delivery temperatures in other countries. These temperatures are shown in the graph in <u>FIGURE 2.2</u>.

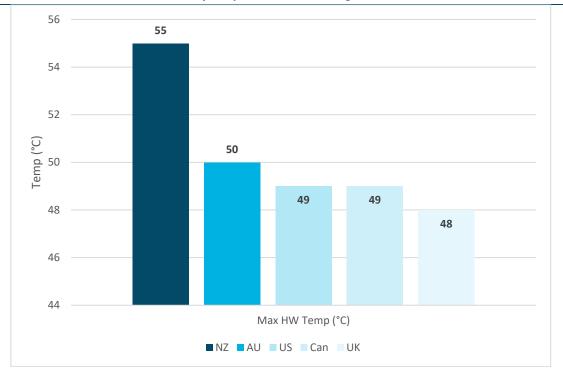


FIGURE 2.2: Maximum hot water delivery temperatures for bathing

Additionally, it was identified that the Ministry of Education Licensing Criteria for Early Childhood Education and Care Services⁶ requires that all early childhood centres are required to deliver a warm water temperature no higher than 40°C.

Based on this review, MBIE considered the following options maximum hot water temperatures against the status quo:

Option 1. 50°C for most buildings; 45°C for schools, hospitals and care homes; and 40°C for early childhood education centres (Recommended)

This option would align the maximum hot water delivery temperatures in G12/AS1 with equivalent temperatures permitted in Australia, temperatures in the standard AS/NZS 3500.4: 2018, and Ministry of Education requirements for early childhood education centres.

Option 2. Reduce the maximum hot water delivery temperature requirements even lower

This option considers whether all buildings should be at 49°C, 48°C, or even lower. These lower temperatures would reflect the requirements found in other parts of the world.

2.4. Analysis of the options

2.4.1. Objectives of the proposal

The objective of this proposal is to reduce the risk of tap water scald injuries to New Zealanders, while still maintaining adequate hot water temperatures for personal hygiene and preventing the growth of legionella bacteria in heated water. This contributes to achieving Objective G12.1 (b) and G12.1 (c)(i) of the Building Code, Functional requirement G12.2 and Performance criteria G12.3.5, G12.3.6 and G12.3.9. These clauses of the Building Code state:

⁶ Refer to the Ministry of Education Licensing Criteria for Early Childhood Education and Care Services available online at <u>www.education.govt.nz</u>.

Objective

- G12.1 The objective of this provision is to-
 - (b) safeguard people from injury caused by hot water system explosion, or from contact with excessively hot water:
 - (c) safeguard people from loss of amenity arising from–(i) a lack of hot water for personal hygiene

Functional requirement

G12.2 Buildings provided with water outlets, sanitary fixtures or sanitary appliances must have safe and adequate water supplies.

Performance

- **G12.3.5** Sanitary fixtures and sanitary appliances must be provided with hot water when intended to be used for-
 - (a) utensil washing; and
 - (b) personal washing, showering or bathing.
- **G12.3.6** Where hot water is provided to sanitary fixtures and sanitary appliances, used for personal hygiene, it must be delivered at a temperature that avoids the likelihood of scalding.

G12.3.9 A hot water system must be capable of being controlled to prevent the growth of legionella bacteria.

Clause G12.3.5 (b) only applies to housing, retirement homes and early childhood centres as defined in clauses A1 and A2 of the Building Code.

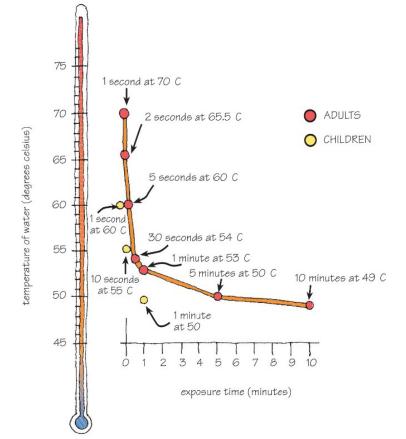
The recommended option is the one that provides the best outcome for these different requirements.

2.4.2. Methodology for determining the maximum hot water delivery temperature

To determine the proposed maximum hot water delivery temperatures, MBIE considered the temperature of water required for personal hygiene purposes as well as the risk of scalding posed by different water temperatures.

Most individuals shower or bathe in water close to their internal body temperature at 36-38°C. Thermal hot pools are generally in this range but may be as hot as 42-44°C. Washing in the kitchen and laundry may require hotter temperatures. Similarly, to prevent the growth of legionella bacteria in storage water heating systems, higher water storage temperatures are required (minimum 60°C). As part of this proposal, the proposed maximum delivery temperatures for hot water would only apply to the temperature of water delivered to sanitary fixtures used for personal hygiene, including hand basins, baths and showers. The proposed maximum delivery temperatures would not apply to water delivered to kitchen sinks or laundries as these are not considered sanitary fixtures used for personal hygiene. The minimum temperature for storage water heating systems of 60°C would remain unchanged as this is controlled separately from the maximum delivery temperature.

The risk from scalding depends on both the water temperature and how long the skin has been exposed to that temperature. The higher the temperature, the shorter the time until a burn occurs. This relationship is not direct and minor decreases in temperature can significantly prolong the time for exposure. This is illustrated in <u>FIGURE 2.3</u>.


At a water temperature of 55°C, a full skin thickness burn would take 10 seconds for children and 30 seconds for adults. At 50°C, this extends to one minute for children and up to five minutes for adults. Below this temperature, the likelihood of scalding continues to decrease. Additional consideration is required for the skin of very young and older people which are more susceptible to harm.

The current requirements in Acceptable Solution G12/AS1 limit the maximum hot water delivery temperature to 45°C for early childhood centres, schools, rest homes, institutions for people with psychiatric or physical disabilities, and hospitals. This temperature provides a reasonable level of protection to avoid the likelihood of

scalding in these facilities. The Ministry of Education sets its own maximum temperature for water delivered from taps that are accessible to children in early childhood education centres⁷ at 40°C. In consideration of these factors,

- > A maximum delivery temperature of 50°C is considered to effectively reduce the risk of scalding in most situations, while also being sufficiently hot for personal hygiene purposes.
- > A maximum delivery temperature of 45°C is the current requirement for schools, old people's homes,
- institutions for people with psychiatric or physical disabilities, and hospitals. This remains appropriate. A maximum delivery temperature of 40°C for early childhood education centres will align with the
- Ministry of Education's licensing requirements for the operation of these facilities.

FIGURE 2.3: Time of exposure and water temperature at which full thickness skin scalds can occur

© Copyright BRANZ Ltd, 2004. We would like to thank BRANZ for their permission to use this image from the <u>Plumbing</u> and <u>Drainage Guide 2nd edition</u> in this consultation document.

2.4.3. Temperature control devices

As part of this proposal, MBIE also considered the means for limiting the hot water delivery temperatures. Acceptable Solution G12/AS1 currently provides one means for this through the use of tempering valves and references two standards for the manufacture of tempering valves. Additional options for the control of delivery temperatures were previously found in AS/NZS 3500.4: 2018. However, these options have been removed from the 2021 edition of this standard to avoid a conflict between the Plumbing Code of Australia and the New Zealand Building Code requirements. As a result, additional temperature control devices are proposed for inclusion in G12/AS1 through:

- > thermostatic mixing valves
- > thermostatically controlled taps

⁷ Refer to the Ministry of Education Licensing Criteria for Early Childhood Education and Care Services available online at <u>www.education.govt.nz</u>.

> temperature limited water heaters.

2.4.4. Impacts of the proposed change

MBIE expects that impacts of this change include:

- > A reduction in the number of tap water scald injuries across the country.
- Providing heated water system designers and plumbers greater flexibility to select the most appropriate temperature control device for the particular situation.
- > Have minimal cost implications since it involves pre-setting or commissioning temperature control devices to a lower temperature.
- > Have negligible impact on the amenity in a building due to lack of hot water for personal hygiene.
- Have no impact on the storage water temperature to prevent the growth of legionella bacteria as the storage temperature is controlled separately from the delivery temperature.

2.5. Transitions

Effective date: 4 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solution G12/AS1 will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed cessation date) as described in TABLE 2.1.

TABLE 2.1: Proposed transitional arrangements for the updated Acceptable Solution G12/AS1 water temperature requirements

Document	Before 2 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solutions	If used, will be treated as complying with the Building Code	If used, will be treated as complying with the Building Code
Amended Acceptable Solutions	Does not apply to Building Consents issued before this date	If used, will be treated as complying with the Building Code

2.6. Questions for the consultation

- 2-1 Do you support amending Acceptable Solution G12/AS1 to help reduce the number of hot water scalding injuries in New Zealand, by reducing maximum hot water delivery temperatures for some buildings? The proposed hot water delivery temperatures are:
 - > 50°C for most buildings
 - > 45°C for institutions such as schools, hospitals and care homes (no change)
 - > 40°C for early childhood education centres to align with Ministry of Education requirements.
 - □ Yes, these temperatures are about right
 - \Box No, these temperatures should be even lower
 - \Box No, the temperatures should remain as is
 - (status quo at 55°C for most buildings and 45°C for institutions and early childhood education centres)
 - □ Not sure/no preference
- 2-2 What impacts would you expect on you or your business from the proposed options? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 2-3 Do you agree with the proposed transition time of 12 months for the proposed changes to take effect?
 - □ Yes, it is about right
 - □ No, it should be longer (24 months or more)
 - □ No, it should be shorter (less than 12 months)
 - □ Not sure/no preference

3. Protection of potable water

We are proposing to update Acceptable Solution G12/AS1 to improve the requirements to protect potable water from backflow contamination. Backflow occurs when the flow of water within a pipe is reversed, which can draw contaminants into a potable water supply. It can create a health risk to occupants in buildings and to entire public water supply networks. The proposed changes will improve clarity around when backflow prevention is required, what type of backflow prevention devices are suitable and how these devices should be installed and tested.

3.1. Reasons for the change

Backflow occurs when the flow of water within a pipe is reversed, which can draw contaminants into a potable water supply system. It can create a health risk to occupants in buildings and to entire public water supply networks. The Building Code requires that water supply systems are installed in a manner that safeguard people from illness caused by contaminated water and Acceptable Solution G12/AS1 sets out key provisions for protecting potable water from the risk of contamination from backflow.

We have heard from stakeholders in the plumbing industry that there are issues with current backflow prevention measures. Some requirements are unclear, which has led to inconsistencies in application and compliance across the country. At the same time, the government Three Waters Reform Programme is also looking to ensure safe, reliable drinking water is provided to consumers.

We believe that improving the provisions for protecting drinking water supplies from the potential risk of contamination from backflow will give New Zealanders more confidence that water from the tap is safe to drink. We want to hear whether submitters agree that now is the time to make these improvements to the backflow prevention provisions within Acceptable Solution G12/AS1.

3.2. Proposed changes

The proposed changes will improve clarity around when backflow prevention is required, what type of backflow prevention devices are suitable and how these devices should be installed and tested. This includes:

- > including additional cross-connection hazard rating examples to provide greater clarity
- > introducing containment⁸ backflow protection provisions to better align requirements to protect water supplies from contamination from buildings
- > strengthening backflow prevention device installation provisions; and
- > referencing the latest backflow prevention device testing and manufacturing standards.

Additionally, we are proposing to amend the definition for potable water within G12/AS1 to align with the definition introduced into the Building Act 2004 and Building Code regulations as part of the Water Services Act 2021 coming into force.

The proposed changes are described in Section 3.4. For more details of the proposed wording in Acceptable Solution G12/AS1, please refer to <u>Appendix B</u>.

3.3. Options considered

For this proposal, MBIE considered the following two options against the status quo:

⁸ Containment backflow protection is proposed to be defined in G12/AS1 as "Backflow protection installed adjacent to the point of supply to protect a water main from any potential contamination risk posed by backflow from a premises."

Option 1. Provide guidance regarding appropriate practices for the provision installation of backflow prevention devices

This option considered providing informative guidance around when backflow prevention is required, what type of backflow prevention devices are suitable and how these devices should be installed and tested.

Option 2. Update G12/AS1 Section 3.0 Protection of potable water

This option considered updating G12/AS1 Section 3.0 Protection of potable water to include additional crossconnection hazard rating examples, introduce containment backflow protection provisions, improve backflow prevention device installation requirements and reference the latest testing and manufacturing standards was considered.

3.4. Analysis of the changes

3.4.1. Objectives of the proposal

Following an analysis of the identified issues and consultation with industry parties, option 2 was identified as the most effective option to further reduce the risk of backflow contamination to potable water supplies. This option helps to ensure that requirements under the Building Code continue to support the wider government Three Waters Reform Programme objective of ensuring safe, reliable drinking water supplies.

The objective of these proposed changes is to improve the protection of drinking water from backflow contamination. This contributes to achieving Objective G12.1 (a) and G12.1 (c) (ii) of the Building Code, Functional requirement G12.2 and Performance criteria G12.3.1 and G12.3.2. These clauses of the Building Code state:

Objective

- G12.1 The objective of this provision is to-
 - (a) safeguard people from illness caused by contaminated water.
 - (c) safeguard people from loss of amenity arising from-
 - (ii) water for human consumption, which is offensive in appearance, odour or taste.

Functional requirement

G12.2 Buildings provided with water outlets, sanitary fixtures or sanitary appliances must have safe and adequate water supplies.

Performance

- **G12.3.1** Water intended for human consumption, food preparation, utensil washing or oral hygiene must be potable.
- G12.3.2 A potable water supply system shall be-
 - (a) protected from contamination; and
 - (b) installed in a manner which avoids the likelihood of contamination within the system and the water main; and
 - (c) installed using components that will not contaminate the water.

3.4.2. Additional cross-connection hazard rating examples

G12/AS1 Paragraph 3.3 describes three cross connection hazard rating categories (High, Medium and Low) and provides examples of various building systems which fall into each category. The current example lists have not been updated for 20 years and additional examples are to provide clarity regarding the cross-connection hazard ratings that should be applied to potable water supplies to these contemporary building systems. MBIE reviewed the existing requirements and identified additional examples of cross connections hazards. The additional examples proposed to include in G12/AS1 include:

High Hazard

- > Bidets and douche seats
- > Handheld bidet hoses and WC trigger sprays
- > Connections for portable and mobile tankers
- > Healthcare waste disposal equipment

Medium Hazard

- > Treated grey water
- > Note 1: For carbonated drink dispensers, the pipework material installed downstream of the backflow prevention device shall not be made of copper and not be affected by carbon dioxide gas.

Low Hazard

- > Drinking fountains and bottle fillers
- > Rainwater tanks and supply systems (see Note 2)
- > External hose taps, with no hazards within 18 metres
- > Emergency eye wash and shower stations
- Note 2: Air gap separation is the recommended type of backflow prevention for a rainwater tank with a potable water supply connection.

3.4.3. Backflow protection for public water supplies

The current backflow protection requirements within G12/AS1 focus on the provision of appropriate backflow prevention devices as near as practicable to any potential source of contamination within buildings.

Additional containment backflow protection⁹ provisions are proposed to be introduced into Acceptable Solution G12/AS1. This proposed change includes the introduction of requirements for containment backflow prevention to be provided for new buildings that pose a heightened risk of water supply contamination if a cross connection was to occur. This will provide additional protection to public water supplies from premises such as those which process or manufacture toxic chemicals and those which process human or animal biological or faecal matter.

Existing containment backflow prevention requirements are being applied inconsistently across New Zealand and in 2021, were transferred from <u>Health Act 1956</u> into the <u>Water Services Act 2021</u>. These existing requirements place responsibility on drinking water suppliers to protect drinking water supplies against the risk of backflow.

This proposed change will ensure those constructing new buildings that pose a heightened risk of water supply contamination provide containment backflow protection to comply with the Building Code. This will not impact the ability for water suppliers to install containment backflow prevention devices upstream of the point of supply to a premises where they have determined there is a risk of backflow into the drinking water supply.

Containment backflow prevention devices installed to comply with the Building Code need to be installed by an authorised plumber. They also need to be included on a buildings compliance schedule and tested annually by an independently qualified person as part of the process for issuing an annual building warrant of fitness.

⁹ Containment backflow protection is proposed to be defined in G12/AS1 as "Backflow protection installed adjacent to the point of supply to protect a water main from any potential contamination risk posed by backflow from a premises."

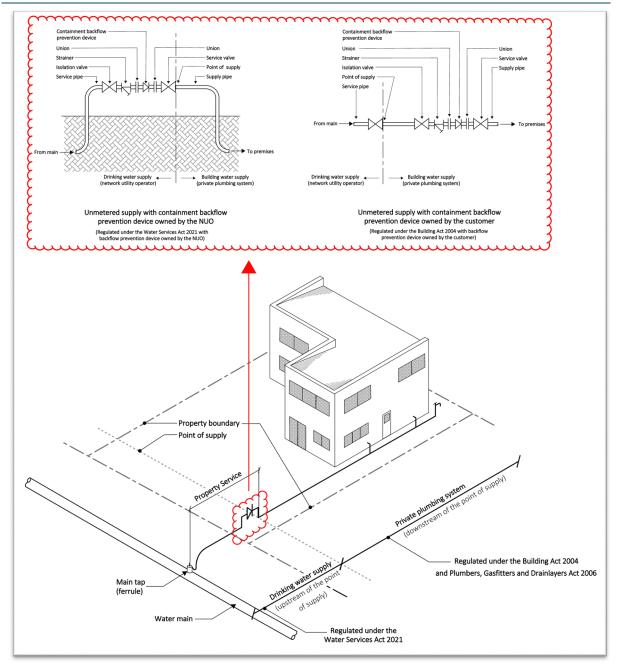


FIGURE 3.1: Example of containment backflow protection

3.4.4. Backflow prevention device installation

These proposed changes relate to the provisions for the installation of backflow prevention devices within G12/AS1 that are not in line with industry practice.

The proposed backflow prevention device installation changes are intended to clarify that:

- > Integral backflow prevention devices appropriate for the relevant cross-connection hazard are acceptable.
- > Backflow prevention devices must be fitted with mechanical unions on the inlet and outlet of the valve to allow for the removal of the valve for replacement.
- > Backflow prevention devices need to be installed with isolation valves in order allow independently qualified persons to test these devices annually.

- Backflow prevention devices installed within buildings need to have adequate drainage provisions to accommodate both intermittent and full flow rate discharge to prevent water damage to building elements in the event a relief valve fully opens.
- > Backflow prevention devices need to be adequately supported to prevent damage to the connecting pipework.
- Providing guidance around what constitutes an accessible position for backflow prevention devices to be installed. This clarification is proposed to reduce the likelihood of devices being installed in locations that may compromise the health and safety of the independently qualified persons who are required to test these devices annually.

3.4.5. Backflow prevention device testing and manufacturing standards

Standards and documents for backflow prevention device testing and manufacturing cited within G12/AS1 are out of date. We are proposing to cite the updated versions of:

- > AS/NZS 2845.3:2020 Water supply Backflow prevention devices Field testing and maintenance of testable devices
- Water New Zealand and Master Plumbers, Gasfitters and Drainlayers NZ Inc, NZ Backflow testing standard 2019, Field testing of backflow prevention devices and verification of air gaps.

This standard and document has been reviewed against the criteria outlined in the MBIE Operating Protocol - Referencing standards in the Building Code system¹⁰. No significant issues were identified that would prohibit them from being cited in the acceptable solutions and verification methods.

3.4.6. Identification of water supply pipework

Water supply pipework systems need to be clearly identifiable to reduce the risk of plumbers misidentifying pipework. The misidentification of pipework can lead to potential cross-connections between a potable and non-potable water services, which can result in water supply contamination and subsequent health risks.

G12/AS1 Paragraph 4.3.1 currently references the standard NZS 5807:1980 as the means of identifying potable and non-potable pipelines within buildings. NZS 5807 is no longer considered to provide sufficient clarity regarding identification requirements for non-potable water supply pipework within buildings to reduce the risk of cross connections occurring. It is proposed to amend G12/AS1 to clarify that potable and non-potable water supply pipework within buildings should be identified in accordance with AS/NZS 3500 Part 1 to reduce the risk of cross connection and subsequent water supply contamination.

3.4.7. AS/NZS 3500 Part 1 Section 4 Cross-connection control and backflow prevention

The backflow prevention provisions within AS/NZS 3500.1: 2021 Section 4 are proposed to be cited as an Acceptable Solution within G12/AS3. For further information on the proposed changes to the citation of the 2021 AS/NZS 3500 Plumbing and drainage standards, please refer to proposal 4.

3.4.8. Definition of potable water

The definition of 'potable water' is proposed to be amended and a definition for 'drinking water standards' added within the Definitions for G12/VM1 & AS1/AS2/AS3 in order to align with the definitions inserted by the Water Services Act 2021 into the Building Act 2004 s7 Interpretation, and Building Regulations 1992 Schedule 1 Building Code Clause A2 Interpretation.

3.4.9. Impacts of the changes

The costs and benefits of the changes were assessed qualitatively. MBIE expects the proposed changes will help ensure the backflow prevention provisions within the acceptable solutions for Building Code clause G12 continue to ensure that plumbing systems are installed in a manner which avoid the likelihood of contamination within building water supply systems and public water mains to ensure public health is protected.

¹⁰ <u>Referencing standards in the Building Code system</u>

The proposed changes will provide more consistent and standardised approaches for the provision of backflow prevention. This will help create a more efficient design review process for building consent applications.

Information and education will be required to ensure plumbers, independently qualified persons who test backflow prevention devices, and building consent officers are aware of any changes to the backflow prevention provisions within the acceptable solutions for Building Code clause G12, and to help them understand what this means for them.

In consideration of these impacts, the benefits of the change exceed the costs.

It is expected that these proposed changes will:

- > Make it easier to determine appropriate cross-connection hazard ratings
- Improve clarity around when containment backflow prevention is required for a premises and what type of backflow prevention device is suitable
- Complement previous requirements under the Health Act and support proposed new requirements for protecting water supplies being introduced by Taumata Arowai
- > Strengthening backflow prevention device installation requirements
- > Ensure the use of the latest backflow prevention device testing and manufacturing standards are deemed to comply with the Building Code.

3.5. Transitions

Effective date: 4 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solutions and Verification Methods will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed cessation date) as described in TABLE 3.1.

TABLE 3.1: Proposed transitional arrangements for the protection of potable water

Document	Before 2 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solution	If used, will be treated as complying	If used, will be treated as complying
G12/AS1 Amendment 12	with the Building Code	with the Building Code
Amended Acceptable	Does not apply to Building Consents	If used, will be treated as complying
Solution G12/AS1	issued before this date	with the Building Code

3.6. Questions for the consultation

- 3-1 Do you support the proposed amendments to Acceptable Solution G12/AS1 for the protection of potable water?
- 3-2 What impacts would you expect on you or your business from the proposed options? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 3-3 Do you agree with the proposed transition time of 12 months for the proposed changes to take effect?
 - \Box Yes, it is about right
 - \Box No, it should be longer (24 months or more)
 - \Box No, it should be shorter (less than 12 months)
 - \Box Not sure/no preference

4. AS/NZS 3500 Plumbing and drainage standards

We are proposing to cite the 2021 editions of the AS/NZS 3500 Plumbing and drainage standards as acceptable solutions for complying with Building Code clauses E1 Surface Water, G12 Water Supplies and G13 Foul Water. This follows a three-year revision project to improve these standards. These standards play an integral part in setting out design and installation requirements for plumbing and drainage systems in New Zealand. We are also proposing to cite AS/NZS 3500:2021 Part 1 and Part 4 under a new Acceptable Solution G12/AS3, which will provide consistency between the status of these standards under the Building Code.

4.1. Reasons for the change

The AS/NZS 3500 Plumbing and Drainage standards have been cited within the Building Code system since its inception in 1992. These standards contribute significantly to supporting the Building Code system¹¹ and are currently cited as Acceptable Solutions and Verification Methods for multiple Building Code clauses.

The publication of the 2021 editions of the AS/NZS 3500 series follows a three-year revision project to improve these standards. These standards play an integral part in setting out design and installation requirements for plumbing and drainage systems in New Zealand. They also support the Trans-Tasman Mutual Recognition Arrangement which allows plumbers and drainlayers who are registered in New Zealand to practise in Australia, and vice versa.

MBIE have invested considerable time and resource into the development of the AS/NZS 3500 series of plumbing and drainage standards as part of the technical committee. As such, it is now possible to remove a number of the citation modifications made to AS/NZS 3500 that were previously required for compliance with the Building Code.

4.2. Proposed changes

We are proposing to cite the 2021 editions of the AS/NZS 3500 Plumbing and drainage standards as Acceptable Solutions for complying with Building Code clauses E1 Surface Water, G12 Water Supplies and G13 Foul Water. This includes proposed changes to:

- Acceptable Solutions E1/AS2
 - Cite the new AS/NZS 3500.3: 2021 Plumbing and drainage Stormwater drainage and remove a number of modifications previously found in E1/AS2.
- › Acceptable Solution G12/AS3
 - Issue the new Acceptable Solution G12/AS3 to cite AS/NZS 3500.1: 2021 Plumbing and drainage Water Services and AS/NZS 3500.4: 2021 Plumbing and drainage – Heated water services.
- › Acceptable Solutions G13/AS3
 - Cite the new AS/NZS 3500.2: 2021 Plumbing and drainage Sanitary plumbing and drainage Amendment 1 and remove a number of modifications previously found in G13/AS3.

As part of this year's update, we are also proposing to introduce a method for calculating design flow rates for use in sizing water services for multiple types of buildings into Verification Method G12/VM1, which currently cites AS/NZS 3500.1 and .4. Details of this proposed change are provided in <u>Proposal 5</u>.

¹¹ Please refer to the MBIE Operating Protocol "Tier framework to support standards in the Building Code system" for the assessment of importance of standards. This framework was consulted on publicly in 2021 and is available online at <u>building.govt.nz</u>.

For more details of the proposed changes to the documents, please refer to:

- > Appendix A for the proposed citation of AS/NZS 3500.3:2021 in Acceptable Solution E1/AS2 for stormwater drainage systems
- Appendix B for the proposed citation of AS/NZS 3500.1:2021 and AS/NZS 3500.4:2021 in a new Acceptable Solution G12/AS3 for cold and heated water services
- > Appendix C for the proposed citation of AS/NZS 3500.2:2021 in Acceptable Solution G13/AS3 for sanitary plumbing and drainage systems

FIGURE 4.1: AS/NZS 3500: 2021 Plumbing and drainage standards

4.3. Options considered

For this proposal, MBIE considered the following three options against the status quo:

Option 1: Insert the applicable requirements directly into the acceptable solutions and verification methods This option was not considered to be reasonable as the material is too large and impractical for direct publication in the acceptable solutions and verification methods.

Option 2: Identify alternative standards and reference those documents instead

This option was not considered to be reasonable as no alternative standards were identified that were specific to the New Zealand context.

Option 3: Revise the references and citations to reflect the newest versions of the published version (recommended) – This option is recommended in order to maintain up-to-date information and to reduce confusion and disconnect between industry practice and compliance with the Building Code. This also aligns with our strategic direction to support the development of these standards for compliance with the Building Code.

4.4. Analysis of the proposed changes

4.4.1. Objectives of the proposal

The objective of this change is to reference up-to-date standards for designing and installing plumbing and drainage systems within the Building Code compliance pathways and remove New Zealand specific modifications within the existing acceptable solutions. This contributes to achieving the Building Code objectives for E1 Surface Water, G12 Water Supplies, and G13 Foul Water and their associated function requirements and performance criteria. The objectives of these clauses state:

Objective

- E1.1 The objective of this provision is to-
 - (a) safeguard people from injury or illness, and other property from damage, caused by surface water, and
 - (b) Protect the outfalls of drainage systems.
- G12.1 The objective of this provision is to-
 - (a) safeguard people from illness caused by contaminated water
 - (b) safeguard people from injury caused by hot water system explosion, or from contact with excessively hot water:
 - (c) safeguard people from loss of amenity arising from–
 (i) a lack of hot water for personal hygiene; or
 (ii) water for human consumption, which is offensive in appearance, odour or taste
 - (d) ensure that people with disabilities are able to carry out normal activities and functions within buildings.
- **G13.1** The objective of this provision is to:
 - (a) Safeguard people from illness due to infection or contamination resulting from personal hygiene activities; and
 - (b) Safeguard people from loss of amenity due to the presence of unpleasant odours or the accumulation of offensive matter resulting from foul water disposal.

4.4.2. Significant changes to the AS/NZS 3500 standards

Significant changes within the AS/NZS 3500:2021 Plumbing and drainage series include:

- The removal of specific product standard conformance requirements to avoid inconsistencies with the WaterMark scheme and the NZ Building Code.
- > Relocation of definitions into AS/NZS 3500: 2021 Part 0 Glossary of terms for consistency across the series.
- Removal of cross-connection hazards and corresponding hazard ratings to avoid conflict between the Plumbing Code of Australia and New Zealand Building Code Acceptable Solution G12/AS1.
- > Jointing requirements for plastics pipes have been clarified and expanded to allow different methods.
- Changes to the requirements for the marking of pipes in commercial buildings to assist in better identification of pipework and avoid cross connections.
- > Changes to the requirements for the installation of water services located in metal-framed walls.
- > Changes to the connection requirements for sanitary drains at grade.
- The range of materials that can be used for wet wells has been expanded to encompass prefabricated wells.
- Design rainfall intensities for stormwater drainage systems are now expressed in terms of the Annual Exceedance Probability (AEP)¹² values to reflect the practice of the Australian Bureau of Meteorology (BOM) and align with the performance requirements of Building Code clause E1 Surface water.
- Design rainfall intensities for stormwater drainage systems have been updated to show the latest values from the Australian Bureau of Meteorology (BOM) and New Zealand's National Institute of Water and Atmospheric Research (NIWA).

¹² The Annual Exceedance Probability (AEP) is the probability that a given total quantity of rainfall, accumulated over a given duration, will be exceeded in any one year, and is expressed as a percentage.

- > New Zealand rainfall maps have been replaced by Table E.1 showing 10 % AEP (10 years ARI) and 2 % AEP (50 years ARI) rainfall intensities for selected locations.
- The minimum separation distance between above-ground heated water services and electrical services has been reduced to align with the AS/NZS 3000 Wiring rules and AS/NZS 3500.1.
- Changes have been made to requirements for circulated heated water systems including water meters and entry points for heated water, thermal insulation for non-circulatory heated water piping, and maximum capacities of any dead leg from the branch offtake to its termination - to improve the amenity for users and reduce wastage of water and energy.
- Heated water temperature control provisions relating to maximum sanitary fixture delivery temperatures and solutions for control of delivery temperatures have been deleted to avoid conflict between the Plumbing Code of Australia and New Zealand Building Code Acceptable Solution G12/AS1.

The proposed AS/NZS 3500: 2021 standards have been reviewed against the criteria outlined in the MBIE Operating Protocol - Referencing standards in the Building Code system¹³. No significant issues were identified that would prohibit them from being cited in the acceptable solutions and verification methods.

Additionally, a number of modifications to the standards previously found in the acceptable solutions are proposed to be removed. These modifications are no longer necessary for the proposed citation of AS/NZS 3500: 2021 as these have been incorporated into the standard through MBIEs involvement in the standards committee. The appendices for this consultation document detail the modifications to be removed from the acceptable solutions

4.4.3. Impacts of the changes

Costs and benefits of the changes were assessed qualitatively. Along with issuing the new Acceptable Solution G12/AS3, MBIE expects the following from citing these new standards:

- The changes to the standards builds upon knowledge from both sides of the Tasman and reflects the most up-to-date information for designing and installing plumbing and drainage systems. This will assist with achieving the objectives for Building Code clauses E1, G12 and G13.
- Incorporating New Zealand specific modifications directly into the standards will make demonstrating compliance with the Building Code easier and less confusing for users and building consent authorities.
- > Issuing the new Acceptable Solution G12/AS3 will provide a more consistent approach for what material is suitable for publishing as a verification method versus an acceptable solution.
- The technical changes within the 2021 editions of the AS/NZS 3500 standards are not anticipated to result in material increases to the cost of constructing plumbing and drainage systems.
- > Users will be required to access the updated standards and incorporate these into existing practices. However, the cost in access is minimal as most users of these standards have access to AS/NZS 3500 series through existing subscriptions, such as those provided by the Plumbers, Gasfitters and Drainlayers Boards, Master Plumbers or employers.

In this case, MBIE considers the benefits of the change exceed the minimal costs.

¹³ <u>Referencing standards in the Building Code system</u>

4.5. Transitions

Effective date: 4 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solutions and Verification Method will remain in force, as if not amended, for a period of 12 months until 3 November 2023 (the proposed cessation date) as described in TABLE 4.1.

TABLE 4.1: Proposed transitional arrangements for the protection of potable water

Document	Before 2 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solutions and Verification Method	If used, will be treated as complying with the Building Code	If used, will be treated as complying with the Building Code
Amended Acceptable Solutions and Verification Method	Does not apply to Building Consents issued before this date	If used, will be treated as complying with the Building Code

4.6. Questions for the consultation

- 4-1. Do you support amending the Acceptable Solutions for E1, G12, and G13 to cite the following AS/NZS 3500: 2021 Plumbing and drainage standards as proposed?
 - > AS/NZS 3500.1: 2021 Water Services
 - > AS/NZS 3500.2: 2021 Sanitary plumbing and drainage
 - > AS/NZS 3500.3: 2021 Stormwater drainage
 - > AS/NZS 3500.4: 2021 Heated Water Systems.
- 4-2. Do you support issuing the new Acceptable Solution G12/AS3 as proposed to cite AS/NZS 3500.1: 2021 Water services and AS/NZS 3500.4: 2021 Heated water services?
- 4-3. Are there any additional modifications to the referencing of the AS/NZS 3500: 2021 Plumbing and drainage standards that we should consider?If there are modifications that you think should be included, please tell us.
- 4-4. What impacts would you expect on you or your business from the proposed options? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 4-5. Do you agree with the proposed transition time of 12 months for the proposed changes to take effect?
 - \Box Yes, it is about right
 - □ No, it should be longer (24 months or more)
 - □ No, it should be shorter (less than 12 months)
 - □ Not sure/no preference

5. Water supply system components

We are proposing 12 improvements within Acceptable Solution G12/AS1 to fill in gaps in this compliance pathway, address issues raised by building consent authorities and industry bodies, and to provide more ways for building water supply systems to comply with the Building Code.

We are also proposing to introduce a 'deemed to comply' pathway for use by plumbing system designers to calculate the design flow rates for sizing water supply pipework in multiple types of buildings within Verification Method G12/VM1.

5.1. Proposed changes

As part of ongoing maintenance of the Building Code compliance pathways, we are proposing 12 improvements to Acceptable Solution G12/AS1 to fill in gaps in this compliance pathway for plumbing system components. The changes proposed include amendments to the provisions in Acceptable Solution G12/AS1 for:

- > Expansion vessels
- > Seismic restraint of water heaters
- › Accessible taps
- > Wet-back water heaters
- > UV resistant pipework insulation material
- > Cleaning and disinfection of water storage tanks
- > Water supply pipework installation standards
- > Minimum and maximum water pressures
- > Relief valve drain discharge locations and tundish drain sizing
- > Minimum pipework cover below ground
- > Flushing of water supply systems
- > Unintentional heating of cold water.

We are also proposing to introduce a compliance pathway for use by plumbing system designers to calculate the design flow rates for sizing water supply pipework in multiple types of buildings within Verification Method G12/VM1.

The issues with these components have previously been raised by plumbing and drainage industry bodies and as items that needed clarification to align with existing design practices. The sections below outline each reason for change, options considered and analysis of the changes. These proposed changes all contribute to achieving Objective G12.1 of the Building Code and Functional requirement G12.2 of the Building Code. The specific performance criteria for each change are provided in the analysis section.

For more specific details on the proposed wording for each change and portions of G12/AS1 and G12/VM1 affected by the proposal, please refer to <u>Appendix B</u>.

5.2. Analysis of the changes

5.2.1. Expansion vessels as an option for managing thermal expansion within storage water heating systems

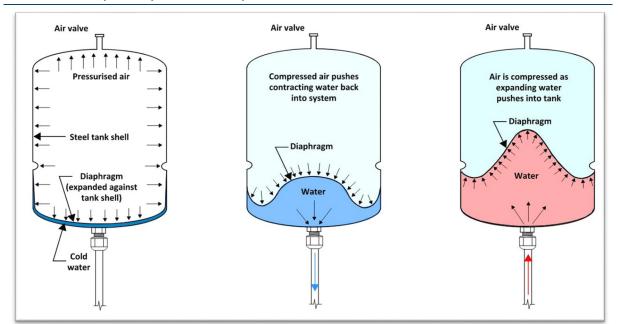
Cold water expands when it is heated. Because storage water heating systems are fitted with a non-return valve on the cold-water supply to prevent this expansion forcing water back into the supply, there needs to be some other mechanism in the system to prevent water heaters or other components from rupturing. This is required to achieve the Building Code Performance Criteria G12.3.8 which states:

Performance

G12.3.8 Vessels used for producing or storing hot water must be provided with safety devices that-

- (a) relieve excessive pressure during both normal and abnormal conditions; and
- (b) limit temperatures to avoid the likelihood of flash steam production in the event of rupture.

Currently, the Acceptable Solution G12/AS1 provides only one solution for this through the provision of an expansion control valve. These valves regularly discharge treated drinking water during the course of normal operations, which is not always the desired design solution.


To provide additional means for compliance, MBIE considered additional options for managing thermal expansion during the normal operation of storage water heating systems. It was identified that expansion vessels were commonly used in other countries to safely manage thermal expansion within storage water heating systems and MBIE commissioned research to determine their suitability for use in New Zealand.

The proposed change would permit the use of expansion vessels as an alternative option to expansion control valves for mains pressure storage water heating systems complying with G12/AS1. Low pressure valve vented storage water heating systems are proposed to be excluded, as these would typically require an excessively large and impractical expansion vessel to accommodate pressure increases in the system.

The costs and benefits of the change were assessed qualitatively. MBIE expects the following from this change:

- Expansion vessels will provide a low-cost, simple-to-install alternative to expansion control valves and meet the applicable Building Code performance criteria for mains pressure systems.
- > Expansion vessels are able to manage the effects of thermal expansion within a storage water heating system without discharging treated drinking water down the drain. This will reduce the amount of water used by the system.
- > Expansion vessels also help stabilise pressures within hot water systems. This can potentially help to improve the durability and lifespan of storage water heating system components.

No significant impact or costs have been identified for the use of expansion vessels as an alternative to expansion control valves. In this case, the benefits of the change exceed the costs.

FIGURE 5.1: Example of expansion vessel operation

5.2.2. Seismic restraint of water heaters

Storage water heaters need to be restrained to prevent movement in the event of an earthquake. The current detail for seismically restraining storage water heaters in G12/AS1 (Figure 14) requires straps to be provided no further than 100mm from the top and bottom of a storage water heater. This can result in the straps clashing with the pipework connections and cylinder controls. We have heard from the plumbing industry that more flexibility is required in this detail so that straps can be located in positions where they do not clash with other critical cylinder features.

G12/AS1 Figure 14 is proposed to be updated to provide alternative options for seismic restraint straps to be located in positions where they do not clash with other critical cylinder features. This will assist in achieving the Building Code Performance Criteria G12.3.7 (c) and B1.3.3 (f) which state:

Performance

G12.3.7 Water supply systems must be installed in a manner that-

(c) allows reasonable access to components likely to need maintenance.

- **B1.3.3** Account shall be taken of all physical conditions likely to affect the stability of buildings, building elements and sitework, including:
 - (f) earthquake.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.3. Accessible taps

Currently only lever or capstan handle taps are permitted to be installed where they are likely to be used by people with disabilities when complying with Acceptable Solution G12/AS1. There are now more modern tapware options available which incorporate sensor plates that activate taps automatically when hands are placed under them. Sensor taps are particularly suitable for use by people with disabilities, particularly where a person may have limited hand function. Capstan handle taps are also no longer installed in facilities for use by people with disabilities and have subsequently been removed as an acceptable option from recent accessible design standard revisions.

It is proposed to amend G12/AS1 to clarify requirements for taps with single lever handles and to allow the provision of sensor activated taps. This will assist in achieving the Building Code Performance Criteria G12.3.10 which states:

Performance

G12.3.10 Water supply taps must be accessible and usable for people with disabilities.

No significant impact or costs have been identified for this change as this provides more options and the benefits of the change exceed the costs.

5.2.4. Wetback water heaters

Wetback water heating systems utilise heat generated from a solid fuel heater to heat water for domestic use. G12/AS1 currently provides a limited amount of information regarding wetback water heating systems and additional detail is required to ensure these systems are installed safely. G12/AS1 is proposed to be amended to cite Part 4 of NZS 4603 Installation of low-pressure thermal storage electric water heaters with copper cylinders (open-vented systems). This standard provides more comprehensive provisions for designing and installing wetback water heating systems utilising natural circulation. Access to view and print NZS 4603 is currently sponsored by MBIE.

It is proposed to amend G12/AS1 to cite the design and installation provisions for wetback water heaters within NZS 4603 Part 4. This will assist in achieving the Building Code Performance Criteria G12.3.8 which states:

Performance

G12.3.8 Vessels used for producing or storing hot water must be provided with safety devices that-

(a) relieve excessive pressure during both normal and abnormal conditions; and

(b) limit temperatures to avoid the likelihood of flash steam production in the event of rupture.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.5. UV resistant pipework insulation material

Water supply pipework installed external to the building envelope needs to be insulated to reduce the risk of freezing in frost prone areas. Hot water pipework is also commonly insulated where installed external to the building envelope to comply with the Building Codes energy efficiency requirements.

When pipework insulation is installed external to the building envelope and exposed to direct sunlight, it needs to be resistant to, or suitably protected from UV exposure. This ensures that pipework insulation installed external to the building envelope will meet minimum durability requirements and continue to satisfy the other objectives of the Building Code. This also supports maximising the insulation's life expectancy and reducing the costs for building owners.

It is proposed to amend G12/AS1 to specify that pipework insulation material exposed to direct sunlight shall be UV resistant or suitably protected to withstand the degradation that can be caused by exposure to ultraviolet light.

Performance

- **B2.3.1** Building elements must, with only normal maintenance, continue to satisfy the performance requirements of this code for the lesser of the specified intended life of the building:
 - (c) 5 years if stated, or:
 - (i) The building elements (including services, linings, renewable protective coatings, and fixtures) are easy to access and replace, and
 - (ii) Failure of those building elements to comply with the building code would be easily detected during normal use of the building.
- **B2.3.2** Individual building elements which are components of a building system and are difficult to access or replace must either:
 - (a) All have the same durability, or

(b) Be installed in a manner that permits the replacement of building elements of lesser durability without removing building elements that have greater durability and are not specifically designed for removal and replacement.

G12.3.7 Water supply systems must be installed in a manner that:

(a) pipes water to sanitary fixtures and sanitary appliances flow rates that are adequate for the correct functioning of those fixtures and appliances under normal conditions; and

(b) avoids the likelihood of leakage; and

(c) allows reasonable access to components likely to need maintenance.

- **H1.3.4** Systems for the heating, storage, or distribution of hot water to and from sanitary fixtures or sanitary appliances must, having regard to the energy source used:
 - (a) limit the energy lost in the heating process; and
 - (b) be constructed to limit heat losses from storage vessels and from distribution systems; and
 - (c) be constructed to facilitate the efficient use of hot water.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.6. Cleaning and disinfection of water storage tanks

Potable water storage tanks may become contaminated during installation or repair from the feet or boots of workers, or from sedimented materials. It is proposed to amend G12/AS1 to cross-reference the requirements for the cleaning and disinfection of potable water storage tanks within AS/NZS 3500.1:2021 Appendix G. Additionally, an informative comment is proposed for inclusion to cross-reference acceptable water storage tank overflow pipe discharge locations within AS/NZS 3500.1:2021 clause 8.4.4.2. This will help ensure water

supplied from tanks is safe to drink and will assist in achieving the Building Code Performance Criteria G12.3.1 and G12.3.2 which states:

Performance

G12.3.1 Water intended for human consumption, food preparation, utensil washing or oral hygiene must be potable.

G12.3.2 A potable water supply system shall be-

(a) protected from contamination; and

(b) installed in a manner which avoids the likelihood of contamination within the system and the water main; and

(c) installed using components that will not contaminate the water.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.7. Minimum and maximum water pressures at sanitary fixtures and appliances

Inadequate water pressure can lead to plumbing fixtures and appliances not functioning adequately and excessive water pressure can shorten the life of appliances and damage plumbing fixtures, leading to leaks and pipe bursts. Additionally, excessive water pressure can result in excessive water use.

To assist with ensuring that building water supplies are not installed with inadequate or excessive water pressures, minimum and maximum water pressure requirements are proposed to be introduced within G12/AS1. This contributes to achieving compliance with Performance Criteria G12.3.7 (a) which states:

Performance

G12.3.7 Water supply systems must be installed in a manner that:

(a) pipes water to sanitary fixtures and sanitary appliances flow rates that are adequate for the correct functioning of those fixtures and appliances under normal conditions; and

(b) avoids the likelihood of leakage

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.8. Water supply pipework installation standards

Building water supply systems can be constructed from various types of materials, and each pipework system material has its own unique installation requirements.

To assist plumbers with ensuring that water systems are installed correctly, it is proposed to amend G12/AS1 to cite suitable installation standards for U-PVC, copper and polyethylene pipework. This contributes to achieving compliance with Performance Criteria G12.3.7 which states:

Performance

G12.3.7 Water supply systems must be installed in a manner that:

(a) pipes water to sanitary fixtures and sanitary appliances flow rates that are adequate for the correct functioning of those fixtures and appliances under normal conditions; and

- (b) avoids the likelihood of leakage; and
- (c) allows reasonable access to components likely to need maintenance.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.9. Unintentional heating of cold water

Cold water within plumbing systems can become unintentionally heated if, for example, cold water supply pipework is run directly under a metal roof. There are potential health risks involved if cold water becomes unintentionally heated, including the risk of legionella bacteria growth or scalding.

G12/AS1 is proposed to be amended to require water supply systems to be installed in a manner that avoids the unintentional heating of cold water. This contributes to achieving the Building Code Performance Criteria G12.3.2 and G12.3.3 which state:

Performance

G12.3.2 A potable water supply system shall be-

(a) protected from contamination; and

(b) installed in a manner which avoids the likelihood of contamination within the system and the water main; and

(c) installed using components that will not contaminate the water.

G12.3.3 A non-potable water supply system used for personal hygiene shall be installed in a manner that avoids the likelihood of illness or injury being caused by the system.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.10. Relief valve drain discharge locations and tundish drain sizing

Storage water heater relief valves require drains to convey water to an appropriate location when valves open. G12/AS1 is proposed to be amended to provide examples of acceptable relief valve drain discharge locations and provide additional information regarding the sizing of relief valve tundish drains. This contributes to achieving the Building Code Performance Criteria G12.3.8 which states:

Performance

G12.3.8 Vessels used for producing or storing hot water must be provided with safety devices that-

- (a) relieve excessive pressure during both normal and abnormal conditions; and
- (b) limit temperatures to avoid the likelihood of flash steam production in the event of rupture.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.11. Minimum pipework cover below ground level for non-trafficable areas

Water supply pipework installed below ground needs to be deep enough to ensure it is adequately protected from accidental damage. G12/AS1 is proposed to be amended to reduce the minimum cover of water supply pipes below gardens, lawns, paths paving for pedestrian use or other areas not subjected to vehicular traffic from 450 mm to 300 mm. This will align the minimum pipework cover requirements for non-trafficable areas in G12/AS1 with equivalent provisions for water supply pipework in AS/NZS 3500.1 and with minimum cover requirements for consumer gas piping in AS/NZS 5601.1. This contributes to achieving the Building Code Performance Criteria G12.3.7 which states:

Performance

G12.3.7 Water supply systems must be installed in a manner that-

- (b) avoids the likelihood of leakage, and
- (c) allows reasonable access to components likely to need maintenance.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs.

5.2.12. Flushing of water supply systems on completion of construction

Flushing water supply pipework after installation or alteration is needed to clear the system of any dirt, swarf or other debris which may interfere with system components or contaminate the water. G12/AS1 is proposed to be amended to require newly installed and altered water supply systems to be flushed at each discharge point to remove any dirty water or debris on completion of construction. This contributes to achieving the Building Code Performance Criteria G12.3.1 and G12.3.2 which states:

Performance

- **G12.3.1** Water intended for human consumption, food preparation, utensil washing or oral hygiene must be potable.
- G12.3.2 A potable water supply system shall be-
 - (a) protected from contamination; and
 - (b) installed in a manner which avoids the likelihood of contamination within the system and the water main; and
 - (c) installed using components that will not contaminate the water.

No significant impact or costs have been identified for this change and the benefits of the change exceed the costs

5.2.13. Water pipe sizing calculation method

Verification Method G12/VM1 currently contains a design method for water supply systems that cites the AS/NZS 3500.1 and AS/NZS 3500.4 standards. The method for sizing of water supply pipework within these standards is limited in its scope of application, being restricted to residential buildings only. It is also based on historical data when flow rates were higher and usage patterns were very different. Research¹⁴ has found that these methods can result in an over-estimation of the design flow when used to design the domestic water systems for various types of buildings.

To assist with demonstrating compliance for other types of buildings, it is desired to provide a more comprehensive verification method to support the sizing of water supply pipework for buildings within G12/VM1. This contributes to achieving compliance with Performance Criteria G12.3.7 (a) which states:

Performance

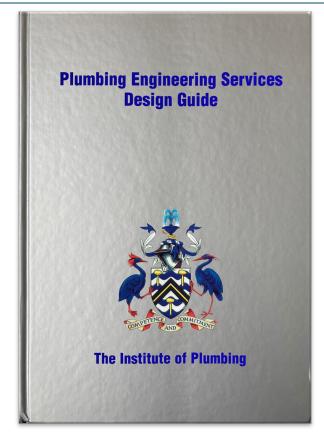
G12.3.7 Water supply systems must be installed in a manner that-

(a) pipes water to sanitary fixtures and sanitary appliances with flow rates that are adequate for the correct functioning of those fixtures and appliances under normal conditions

To establish the methodology for the new verification method, MBIE initiated a review of international methods used to determine design flow rates for the sizing of water services piping. The review included:

- > Identifying other international water supply pipe sizing standards; and
- Conducting a comparison of the water supply size methodologies to the existing requirements in G12/VM1 (AS/NZS 3500.1 and AS/NZS 3500.4) for different building types.

The outcome of this review identified the Plumbing Engineering Services Design Guide 2002 loading unit method as suitable for determining maximum simultaneous flow rates for use in sizing hot and cold-water services for adoption in New Zealand as a verification method. This loading unit method utilises a weighted factor applied to a fixture or appliance and is used for the estimation of simultaneous water flow rates. This estimation method takes account of the flow rate, length of time in use and frequency of use characteristics for each fixture or appliance.


This document is proposed to be cited within Verification Method G12/VM1. As discussed for Proposal 4, the existing compliance pathway is proposed to be moved from G12/VM1 to G12/AS3 to maintain the AS/NZS 3500.1 and AS/NZS 3500.4 standards as a means of compliance with Building Code clause G12.

The new verification method will be suitable for multiple building typologies and is built upon established hydraulic design theory. The costs and benefits of this change were assessed qualitatively. MBIE expects the following from this change:

- The proposed G12/VM1 will provide plumbing systems designers with a deemed to comply method for calculating design flow rates for multiple types of buildings.
- The loading unit method of the Plumbing Engineering Services Design Guide is already widely used by designers in New Zealand to size building water supply pipework systems as an alternative solution. Thus, a considerable portion the industry will already be familiar with its use.

¹⁴ HCAA Water Demand Investigation Results

FIGURE 5.2: Plumbing engineering services design guide

5.3. Transitions

Effective date: 4 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solution G12/AS1 and Verification Method G12/VM1 will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed cessation date) as described in TABLE 5.1.

TABLE 5.1: Proposed transitional arrangements for the new Acceptable Solution G12/AS1 and Verification Method G12/VM1

Document	Before 3 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solutions	If used, will be treated as complying with the Building Code	If used, will be treated as complying with the Building Code
Amended Acceptable Solutions	Does not apply to Building Consents issued before this date	If used, will be treated as complying with the Building Code

5.4. Questions for the consultation

5-1. Do you support the amendments to Acceptable Solution G12/AS1 for the following topics?

- > Expansion vessels
- > Seismic restraint of water heaters
- Accessible taps
- > Wet-back water heaters
- > UV resistant pipework insulation material
- > Cleaning and disinfection of water storage tanks
- > Water supply pipework installation standards
- > Minimum and maximum water pressures
- > Relief valve drain discharge locations and tundish drain sizing
- > Minimum pipework cover below ground
- > Flushing of water supply systems
- > Unintentional heating of cold water.
- 5-2. Do you support the proposed amendment to Verification Method G12/VM1 to cite the Plumbing engineering services design guides loading unit method for determining maximum simultaneous flow rates for sizing water supply pipework?
- 5-3. What impacts would you expect on you or your business from the proposed options? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 5-4. Do you agree with the proposed transition time of 12 months for the proposed changes to take effect? Yes, it is about right
 - □ No, it should be longer (24 months or more)
 - □ No, it should be shorter (less than 12 months)
 - \Box Not sure/no preference.

6. Plumbing and drainage system material standards

We are proposing to cite the latest manufacturing standards for plumbing and drainage system components. These proposed changes form part of regular maintenance updates to address outdated product manufacturing standard citations. In total, there are 12 new or amended standards proposed for citation in Acceptable Solution E1/AS1, 22 for G12/AS1 and G12/AS2, and 12 for G13/AS1 and G13/AS2.

6.1. Reasons for the change

Referenced standards form an important part of the building regulatory system. Standards are consensusbased technical documents that set a benchmark for how to do something. Standards are developed by technical committees and have been used in New Zealand and internationally for decades to inform a number of aspects of building design. They contain necessary details on a repeatable way of doing something which can be used to demonstrate full or partial compliance with the performance requirements of the Building Code.

As building technologies and methods of construction continue to evolve over time, revising the references and citations to technical standards is part of routine maintenance of the acceptable solutions and verification methods. This maintenance ensures that users are provided with the most up-to-date information and removes uncertainty in the consent process as new information becomes available for use.

6.2. Proposed changes

The proposed changes for this proposal are to cite new, or amended versions of product manufacturing standards covering:

- > Cross-linked polyethylene (PE-X) pipe and fittings
- > Stainless steel pipe and fittings
- › Copper pipe and fittings
- > Polybutylene pipe and fittings
- > Polypropylene pipe and fittings
- > Buried flexible pipes
- > Polyethylene pipe and fittings
- > PVC pipes and fittings
- > Stainless steel pipe and fittings
- > Vitrified clay pipes
- > Ductile iron pipe and fittings
- > Copper sheet
- > Aluminium pipes
- > Stainless steel sheet
- > Zinc aluminium sheet.

We are also proposing to:

- Remove galvanised steel as an acceptable material for hot and cold water pipework systems from G12/AS1 Table 1 as it is no longer considered fit for purpose.
- > Cite the latest 2018 version of the plumbing product testing standard AS/NZS 4020 in G12/AS1 Paragraph 2.1.2 to make it easier for accredited test laboratories to verify that plumbing products in contact with drinking water are safe to use.

- Include an informative comment indicating that WaterMarked¹⁵ products may be verified as satisfying the relevant performance requirements of Building Code Clause G12 Water supplies and G13 Foul water within G12/AS1, G13/AS1 and G13/AS2.
- Amend G13/AS1 Table 1 and G13/AS2 Table 1 to include additional acceptable materials for sanitary plumbing and drainage systems and cite the relevant standards for their manufacturing and installation.

There are 12 new or amended standards proposed for Acceptable Solution E1/AS1, 22 for G12/AS1 and G12/AS2, and 12 for G13/AS1 and G13/AS2. The proposed standards to be cited are listed in the appendices along with draft text for their citation in the documents. This also includes minor revisions to tables and text within the documents to cite the new standards. For more details, please refer to:

- > Appendix A for proposed changes to Acceptable Solution E1/AS1 for surface water drainage system materials.
- > Appendix B for proposed changes to Acceptable Solutions G12/AS1 and G12/AS2 for water supply system materials.
- > Appendix C for proposed changes to Acceptable Solutions G13/AS1 and G13/AS2 for foul water system materials.

6.3. Options considered

For this proposal, MBIE considered the following three options against the status quo:

Option 1: Insert the applicable requirements directly into the acceptable solutions and verification methods This option was not considered to be reasonable as the material is too large and impractical for direct publication in the acceptable solutions and verification methods.

Option 2: Identify alternative standards and reference those documents instead

This option is recommended where the current standards have been revoked and no other suitable standards specific to the context in New Zealand were identified. Where a new version of a standard exists, it was not considered to be reasonable to seek alternatives to those that are currently cited in the acceptable solutions and verification methods.

Option 3: Revise the references and citations to reflect the newest versions of the published version

Option 3 is recommended where a new version of the standard exists. This option allows the standard to maintain up-to-date information for the requirements and to reduce confusion and disconnect between industry practice and compliance with the Building Code.

The recommended options (either Option 2 or 3) are detailed in the proposed changes. A majority of the standards proposed to be cited in this proposal fall within Option 3 and have been published as New Zealand, Australian, or joint New Zealand-Australian standards.

6.4. Analysis

The citation of these standards contributes to achieving the Building Code objectives for E1 Surface Water, G12 Water Supplies, and G13 Foul Water and their associated function requirements and performance criteria. The objectives of these clauses state:

Objective

- E1.1 The objective of this provision is to-
 - (a) safeguard people from injury or illness, and other property from damage, caused by surface water, and
 - (b) Protect the outfalls of drainage systems.
- G12.1 The objective of this provision is to-
 - (a) safeguard people from illness caused by contaminated water

¹⁵ ABCB What is WaterMark?

- (b) safeguard people from injury caused by hot water system explosion, or from contact with excessively hot water:
- (c) safeguard people from loss of amenity arising from—
 (i) a lack of hot water for personal hygiene; or
 (ii) water for human consumption, which is offensive in appearance, odour or taste
- (d) ensure that people with disabilities are able to carry out normal activities and functions within buildings.
- **G13.1** The objective of this provision is to:
 - (a) Safeguard people from illness due to infection or contamination resulting from personal hygiene activities; and
 - (b) Safeguard people from loss of amenity due to the presence of unpleasant odours or the accumulation of offensive matter resulting from foul water disposal.

The proposed standards to be cited have been reviewed against the criteria outlined in the MBIE Operating Protocol - Referencing standards in the Building Code system¹⁶.

No significant issues were identified that would prohibit them from being cited in the acceptable solutions and verification methods. Additionally, no modifications to the standards are proposed for their citation.

No significant impact or costs have been identified for amending these standards. MBIE understands that most manufacturers already complying with the newer versions of the standards. Thus, the primary benefit of this proposal are:

- More efficient consenting as Building Consent Authorities would be able to accept products manufactured in accordance with the proposed standards as 'deemed to comply' with the Building Code, and
- Increased confidence in building products used to achieve the objectives for E1, G12, and G13 by using the latest version of the standards.

Additionally, citing the newest versions of these standards may support manufacturers to comply with new building product information laws¹⁷ in the future. These new laws were consulted on in 2021 and the final regulations are currently being developed.

For more information on the requirements in the standards, please review the standards and document in full.

6.5. Transitions

Effective date: 3 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solutions E1/AS1, E1/AS2, G12/AS1, G12/AS2, G13/AS1, and G13/AS2 will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed cessation date) as described in <u>TABLE 6.1</u>.

TABLE 6.1: Proposed transitional arrangements for the new Acceptable Solutions E1/AS1, E1/AS2, G12/AS1, G12/AS2, G13/AS1, and G13/AS2

Document	Before 3 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solutions	If used, will be treated as complying with the Building Code	If used, will be treated as complying with the Building Code
Amended Acceptable Solutions	Does not apply to Building Consents issued before this date	If used, will be treated as complying with the Building Code

¹⁶ <u>Referencing standards in the Building Code system</u>

¹⁷ Building Law Reforms - Building product information requirements

6.6. Questions for the consultation

- 6-1 Do you support the amendments to the following to include the proposed referenced standards and documents for manufacturing plumbing and drainage system components?
 - > Acceptable Solution E1/AS1 for surface water drainage system materials
 - > Acceptable Solutions G12/AS1 and G12/AS2 for water supply system materials
 - > Acceptable Solutions G13/AS1 and G13/AS2 for sanitary plumbing and foul water drainage system materials.

The list of standards is provided in the appendices to the consultation document. If there are standards you don't support, please tell us which standards those are and any reason(s) for your choice.

- 6-2 What impacts would you expect on you or your business from the referencing of these standards? These impacts may be economic/financial, environmental, health and wellbeing, or other areas.
- 6-3 Do you agree with the proposed transition time of 12 months for the proposed changes to take effect?

 \Box Yes, it is about right

 \Box No, it should be longer (24 months or more)

□ No, it should be shorter (less than 12 months)

 \Box Not sure/no preference.

7. Resolving conflicts and editorial changes

We are proposing to amend Acceptable Solutions E1/AS1, G12/AS1, G12/AS2, G13/AS1 and G13/AS2 to make editorial changes and align requirements between compliance pathways for plumbing and drainage systems. Editorial changes may include obvious errors in the text, typos, spelling mistakes, incorrect cross-references, changes in the formatting, minor clarifications of text with minor to no impact, or other items related to current document drafting practices.

7.1. Proposed changes

This proposal contains editorial items and amendments to clarify the existing requirements and resolve existing conflicts in the acceptable solutions used to comply with the Building Code. For these items, the only practicable option identified is to amend the text as this will provide consistency and clarity in the understanding and interpretation of the acceptable solutions. No substantial costs or impacts were identified for these proposed changes.

The proposed changes are described below.

- E1/AS1 Providing example surface water sump catchment area calculations This proposed change involves the addition of a sample calculation example in a comment to Acceptable Solution E1/AS1 Paragraph 3.6.2. This is intended to aid in the interpretation of the calculations for determining the maximum catchment area for type 1 and 2 surface water sumps. This comment box is provided for information only and not intended to affect the level of performance expected in design.
- > G12/AS1 Storage water heater vent pipe standing water level This proposed change involves updating a dimension in G12/AS1 Figure 7 to align the standing water level dimension with the requirements of G12/AS1 Paragraph 6.8.2 e). The water level in the vent pipe in the figure is proposed to be shown with a minimum height of 3.0 metres above the highest outlet.
- G12/AS1 Free outlet (push through) storage water heating system relief valve This proposed change involves the inclusion of a relief valve on the free outlet (push through) water heater shown in G12/AS1
 Figure 11 to align with the requirement for this valve in G12/AS1 Paragraph 6.4.2.
- > G12/AS1 Legionella control within circulatory heated water systems This proposed change involves shifting G12/AS1 Paragraph 6.14.4 to an informative comment and providing clarification that the design and installation of hot or warm water circulating systems and alternative methods of controlling Legionella within these systems is outside the scope of this Acceptable Solution.
- G12/AS1 Water pipe size table references This proposed change involves amending the water pipe size table references in G12/AS1 Paragraph 5.3.1 comment, Table 3 and Table 4.
- > G12/AS1 PVC-U pipework testing method paragraph structure This proposed change involves amending the structure of G12/AS1 Paragraph 7.5.2 PVC-U for consistency.
- G12/AS2 Flashing of pipe penetrations through profiled metal roofs This proposed change includes updating the flashing requirements for pipework penetrations through profiled metal roofs within Acceptable Solution G12/AS2 Paragraph 5.2.5 a). This amendment is required for consistency with equivalent requirements found in Acceptable Solution E2/AS1 Paragraph 8.4.17 a).
- > G13/AS1 and G13/AS2 Installation provisions for junctions in graded pipes and drains The proposed change includes updating the installation requirements for junctions in graded pipes and drains within Acceptable Solutions G13/AS1 Sanitary plumbing and G13/AS2 Foul water drainage. These are required in order to be consistent with equivalent requirements under G13/AS3 Sanitary plumbing and drainage (AS/NZS 3500.2: 2021). Junctions in graded discharge pipes and drains are proposed to have an upstream angle of no greater than 45° and be positioned at an incline of not less than 15° above the horizontal to reduce the risk of blockage.

> G13/AS2 Gully trap height above unpaved ground level – The proposed change includes reducing the minimum overflow level for a gully dish above unpaved surfaces within G13/AS2 Paragraph 3.3.1 a) ii) from 100 mm to 75 mm. This is to be made consistent with equivalent requirements under G13/AS3 Sanitary plumbing and drainage (AS/NZS 3500.2: 2021).

For more details on the proposed changes, please refer to:

- > Appendix A for proposed editorial changes to Acceptable Solutions E1/AS1
- > Appendix B for proposed editorial changes to Acceptable Solutions G12/AS1 and G12/AS2
- > Appendix C for proposed editorial changes to Acceptable Solutions G13/AS1 and G13/AS2.

7.2. Transitions

Effective date: 3 November 2022

Transitional arrangements: 12 months

It is proposed that the existing Acceptable Solutions E1/AS1, G12/AS1, G12/AS2, G13/AS1 and G13/AS2 will remain in force, as if not amended, for a period of 12 months until 2 November 2023 (the proposed cessation date) as described in <u>TABLE 7.1</u>. The proposed transition period of 12 months is intended to align with those for other proposals. This is intended to minimise confusion on which documents and what requirements are in effect on what date.

TABLE 7.1: Proposed transitional arrangements for the new Acceptable Solutions E1/AS1, G12/AS1, G12/AS2, G13/AS1, and G13/AS2

Document	Before 3 November 2022	From 3 November 2022 (effective date) To 2 November 2023 (cessation date)
Existing Acceptable Solutions	If used, will be treated as complying with the Building Code	If used, will be treated as complying with the Building Code
Amended Acceptable Solutions	Does not apply to Building Consents issued before this date	If used, will be treated as complying with the Building Code

7.3. Questions for the consultation

- 7-1 Do you support the following amendments to the acceptable solutions to address the editorial changes and align plumbing and drainage requirements as proposed?
 - E1/AS1:Yes, I support itNo, I don't support itIG12/AS1:Yes, I support itNo, I don't support itIG12/AS2:Yes, I support itNo, I don't support itIG13/AS1:Yes, I support itNo, I don't support itIG13/AS2:Yes, I support itNo, I don't support itI
 - □ Not sure/no preference
 - □ Not sure/no preference

Appendix A. Proposed changes to the acceptable solutions and verification methods for clause E1 Surface Water

As part of Proposals 4, 6 and 7, here are proposed changes to the acceptable solutions and verification methods for clause E1 Surface Water. The list below identifies the portions of the documents that are proposed to be amended as part of each proposal. The proposed changes are also presented as part of the full document with the new or amended text shown in blue.

Proposal 4. AS/NZS 3500 Plumbing and drainage standards

- › Acceptable Solution E1/AS3
 - Cite the new AS/NZS 3500.3: 2021 Plumbing and drainage Stormwater drainage
 - Remove the modifications to AS/NZS 3500.3 previously found in E1/AS2 for Clauses 1.2.2, 3.3.5.2, 3.4.5, 3.7.3, 3.7.7.1, 3.8, 5.2.3, 5.3.1.1, 5.4.8 (b) (ii), 5.4.11.1 (b), 5.4.12, 5.5, 6.2.8 (d) (ii), 6.3.3 (b); and Table 6.2.5.1; and Appendices F, I, and K. These modifications are no longer necessary for the proposed citation of AS/NZS 3500.3: 2021
 - Update the modification to AS/NZS 3500.3 for Clause 5.4.5 (b) for rainfall intensity data sources

Proposal 6. Plumbing and drainage system material standards

- > Cite the following surface water drainage material standards in Acceptable Solution E1/AS1
 - AS/NZS 1254: 2010 PVC-U pipes and fittings for stormwater and surface water applications Amendment 3: 2018
 - AS/NZS 2280: 2020 Ductile iron pipes and fittings Amendment 1
 - AS/NZS 2566.1: 1998 Buried Flexible pipelines Structural Design Amendment 1: 2017
 - NZS 3501: 1976 Specification for copper tubes for water, gas, and sanitation Amendments: 1, 2, 3
 - AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications Amendment: 1: 2021
 - BS EN 1172: 2011 Copper and copper alloys sheet and strip for building purposes
 - AS 1397: 2021 Continuous hot-dip metallic coated steel sheet and strip Coatings of zinc and zinc alloyed with aluminium and magnesium
 - AS 1432: 2004 Copper tubes for plumbing, gasfitting and drainage applications
 - AS 1528.1: 2019 Stainless steel tubes and tube fittings for food processing and hygienic applications Tubes
 - AS 1566: 1997 Copper and copper alloys Rolled flat products
 - AS 1866: 1997 Aluminium and aluminium alloys Extruded rod, bar, solid and hollow shapes
 - ASTM A240/A240M: 2020 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
- > Other changes as part of this proposal in Acceptable Solution E1/AS1
 - Remove the citation for NZS/BS 970.1: 1991 Specification for wrought steels for mechanical and allied engineering purposes – General inspection and testing procedures and specific requirements for carbon, carbon manganese, alloy and stainless steels Amendment 1. This standard has been revoked and the applicable references in the acceptable solution are proposed to cite ASTM A240 instead
 - Revise the acceptable material standards for rainwater downpipes and gutters listed in Tables 4 and 6 to include NZS 3501, AS/NZS 4130, AS 1432, AS 1528, AS 1566, AS 1866, and ASTM A240M

Proposal 7. Resolving conflicts and editorial changes

> Provide a sump calculation example in a comment to E1/AS1 Paragraph 3.6.2

Proposed E1 Surface Water - No changes proposed to this page

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT ΗΙΚΙΝΑ WHAKATUTUKI

Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause **E1 Surface Water**

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT ΗΙΚΙΝΑ WHAKATUTUKI

Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause **E1 Surface Water**

Current E1 Surface Water acceptable solutions and verification methods

(Text to be amended shown in red)

Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Verification Methods and Acceptable Solutions and explains alternative methods of achieving compliance.

Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.

Enquiries about the content of this document should be directed to:

MINISTRY OF BUSINESS, **NBA INNOVATION & EMPLOYMENT** ΗΙΚΙΝΑ ΜΗΑΚΑΤΙΙΤΙΙΚ

Ministry of Business, Innovation and Employment PO Box 1473. Wellington 6140 Telephone 0800 242 243 Email: info@building.govt.nz

Verification Methods and Acceptable Solutions are available from www.building.govt.nz

New Zealand Government

© Ministry of Business, Innovation and Employment 2020

This document is protected by Crown copyright, unless indicated otherwise. The inistry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the purposes of your business provided you reproduce the document accurately and not in an inappropriate or mislaging context. You may not distribute this document to others or reproduce it for sale or profit.

The Ministry of Business, Innovation and Employment owns or has licences to use all images and trademarks in this document. You must not use or reproduce images and trademarks featured in this document for any purpose (except as part of an accurate reproduction of this document) unless you first obtain the written permission of the Ministry of Business, Innovation and Employment.

verification methods (Proposed text in blue)

Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Verification Methods and Acceptable Solutions and explains alternative methods of achieving compliance.

Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.

Enquiries about the content of this document should be directed to:

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT

Ministry of Business, Innovation and Employment PO Box 1473, Wellington 6140 Telephone 0800 242 243 Email: info@building.govt.nz

Verification Methods and Acceptable Solutions are available from www.building.govt.nz

New Zealand Government

© Ministry of Business, Innovation and Employment 2022

This document is protected by Crown copyright, unless indicated otherwise. The Ministry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the purposes of your business provided you reproduce the document accurately and not in an inappropriate or misleading context. You may not distribute this document to others or reproduce it for sale or profit.

The Ministry of Business, Innovation and Employment owns or has licences to use all images and trademarks in this document. You must not use or reproduce images and trademarks featured in this document for any purpose (except as part of an accurate reproduction of this document) unless you first obtain the written permission of the Ministry of Business, Innovation and Employment.

2

2

Proposed amendments to E1 Surface Water acceptable solutions and

Current E1 Surface Water acceptable solutions and verification methods

(Text to be amended shown in red)

Document Status

The most recent version of this document (Amendment 11), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 5 November 2020 and supersedes all previous versions of this document.

The previous version of this document (Amendment 10) will cease to have effect on 3 November 2021

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

	Date	Alterations	
First published	July 1992		
Amendment 1	September 1993	pp. vi and vii, References p. 14, 3.2.1, Figure 3 p. 16, Table 2 p. 18, 3.7.4 p. 20, Figure 13	p. 21, Figure 14 p. 22, Table 4, Table 5, 5.1, 5.1.1, 5.1.2 p. 23, Figure 15, Figure 16 p. 24, 5.1.3, 5.1.4
Amendment 2	19 August 1994	pp. i and ii, Document History p. vi, NZS 3441 replaced NZS 3403	p. 21, 3.9.8 p. 22, Table 4, Table 5 p. 24, 5.1.3, Table 6
Reprinted incorporat	ing Amendments 1 and 2 – October 1994		
Amendment 3	1 December 1995	p. ii, Document History	p. iii, E1.3.1
Reprinted incorporat	ing Amendments 1, 2 and 3 – July 1996		
Amendment 4	1 December 2000	p. ii, Document History p. v, Contents pp. vi and vii, References	p. viii, Definitions pp. 1 – 12K, Revised VM1 pp. 27 and 28, Index
Amendment 5		p. 2, Document History, Status p. 7, References p. 31, 9.0.5	p. 39, 3.8.1 p. 42, 4.3.2
Amendment 6	6 January 2002	p. 3 Code Clause E1	
Reprinted incorporat	ing Amendments 4, 5 and 6 – September 2	2003	
Amendment 7	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 7 and 8, References pp. 9 and 10, Definitions p. 34, E1/AS1 Table 1 p. 37, E1/AS1 Table 3	p. 41, E1/AS1 3.9.8 p. 42, E1/AS1 Table 4 p. 44, E1/AS1 Table 6 p. 47, Index
Reprinted incorporat	ing Amendment 7 – 30 September 2010		
Erratum 1 30 Septer	mber 2010		p. 43, Figure 16
Amendment 8	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status pp. 7 and 8, References p. 9, Definitions	p. 34, E1/AS1 Table 1 p. 37, E1/AS1 Table 3 p. 42, E1/AS1 Table 4
Amendment 9	14 February 2014 until 30 May 2017	p. 2A Document History, Status p. 7 References p. 9 Definitions	p. 41, E1/AS1 3.9.7 p. 44, E1/AS1 5.5.2

2A

Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)

Document Status

The most recent version of this document (Amendment 12), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from X November 20XX and supersedes all previous versions of this document.

The previous version of this document (Amendment 11) will cease to have effect on X November 20XX .

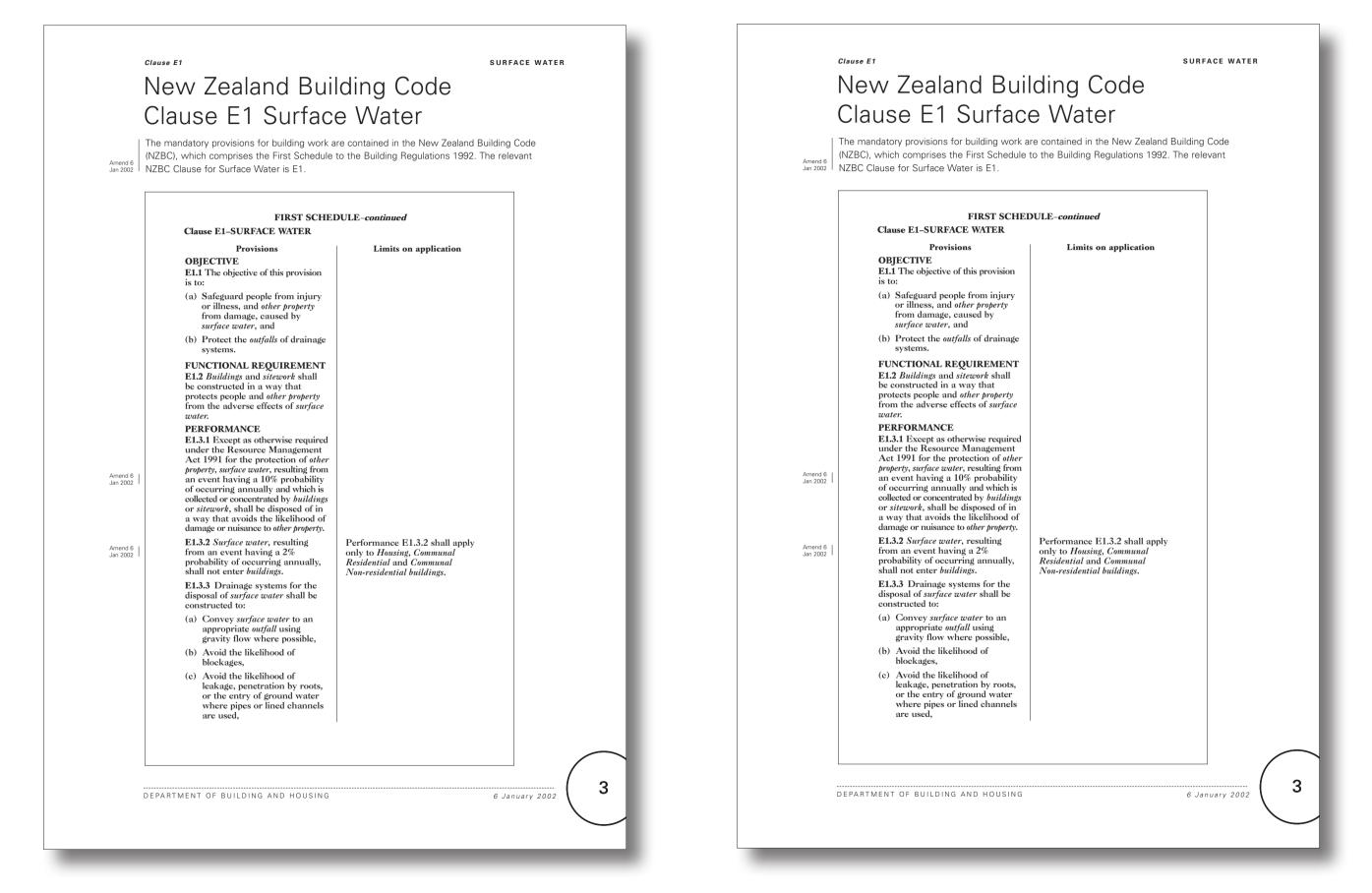
People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

E1: Document H	listory		
	Date	Alterations	
First published	July 1992		
Amendment 1	September 1993	pp. vi and vii, References p. 14, 3.2.1, Figure 3 p. 16, Table 2 p. 18, 3.7.4 p. 20, Figure 13	p. 21, Figure 14 p. 22, Table 4, Table 5, 5.1, 5.1.1, 5.1.2 p. 23, Figure 15, Figure 16 p. 24, 5.1.3, 5.1.4
Amendment 2	19 August 1994	pp. i and ii, Document History p. vi, NZS 3441 replaced NZS 3403	p. 21, 3.9.8 p. 22, Table 4, Table 5 p. 24, 5.1.3, Table 6
Reprinted incorporat	ting Amendments 1 and 2 – October 1994		
Amendment 3	1 December 1995	p. ii, Document History	p. iii, E1.3.1
Reprinted incorporat	ing Amendments 1, 2 and 3 – July 1996		
Amendment 4	1 December 2000	p. ii, Document History p. v, Contents pp. vi and vii, References	p. viii, Definitions pp. 1 – 12K, Revised VM1 pp. 27 and 28, Index
Amendment 5		p. 2, Document History, Status p. 7, References p. 31, 9.0.5	p. 39, 3.8.1 p. 42, 4.3.2
Amendment 6	6 January 2002	p. 3 Code Clause E1	
Reprinted incorporat	ting Amendments 4, 5 and 6 – September 2	2003	
Amendment 7	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 7 and 8, References pp. 9 and 10, Definitions p. 34, E1/AS1 Table 1 p. 37, E1/AS1 Table 3	p. 41, E1/AS1 3.9.8 p. 42, E1/AS1 Table 4 p. 44, E1/AS1 Table 6 p. 47, Index
Reprinted incorporat	ting Amendment 7 – 30 September 2010		
Erratum 1 30 Septer	mber 2010		p. 43, Figure 16
Amendment 8	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status pp. 7 and 8, References p. 9, Definitions	p. 34, E1/AS1 Table 1 p. 37, E1/AS1 Table 3 p. 42, E1/AS1 Table 4
Amendment 9	14 February 2014 until 30 May 2017	p. 2A Document History, Status p. 7 References p. 9 Definitions	p. 41, E1/AS1 3.9.7 p. 44, E1/AS1 5.5.2

2A

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red)

	Date	Alterations	
Amendment 10	Effective 1 January 2017 until 3 November 2021	pp. 7, 8 Re1erences p. 12 E1/VM1 Table 1	p. 31 E1/VM1 9.0.6
Amendment 11	Effective 5 November 2020	p. 5 Contents pp. 7–8 References p. 9 Definitions p. 13 E1/VM1 2.2.1 p. 34 E1/AS1 3.2.2, Table 1 p. 37 E1/AS1 3.6.1	p. 40 E1/AS1 Figure 13 p. 44 E1/AS1 5.1.5, Table 6 pp. 45–51 E1/AS1 Appendix A pp. 52–55 New Acceptable Solutio E1/AS2 included p. 57 Index
Note: Page number	s relate to the document at the time of	of Amendment and may not match pa	ge numbers in current document.


Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)

2B

E1: Document H	istory (continued)		
	Date	Alterations	
Amendment 10	Effective 1 January 2017 until 3 November 2021	pp. 7, 8 Re1erences p. 12 E1/VM1 Table 1	p. 31 E1/VM1 9.0.6
Amendment 11	Effective 5 November 2020	p. 5 Contents pp. 7–8 References p. 9 Definitions p. 13 E1/VM1 2.2.1 p. 34 E1/AS1 3.2.2, Table 1 p. 37 E1/AS1 3.6.1	p. 40 E1/AS1 Figure 13 p. 44 E1/AS1 5.1.5, Table 6 pp. 45–51 E1/AS1 Appendix A pp. 52–55 New Acceptable Solution E1/AS2 included p. 57 Index
Amendment 12	Effective xx November 2022		

2B

Proposed E1 Surface Water - No changes proposed to this page

URFACE WATER	Clause E1	SURFACE WATER	Clause E1
<page-header><section-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></section-header></page-header>		1992/150 Building Regulations 1992 57 EXESTENEDLE-continued Initia conseptication On Provide reasonable access for mainternance and elearing lockages; Initia conseptication On Void the likelihood of damage to any outfull, in a manner acceptable to the network utility operator, and damage from superimposed loads or normal ground movements. Initia conseptication	
July 1992 DEPARTMENT OF BUILDING AN	ND HOUSING	4 July 1992 DEPARTMENT OF BUILDING	AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

Contents E1/VM1 & AS1/AS2

Contents

Amend 4 Dec 2000

Amend 4 Dec 2000

		Page			P	age	
	Refe	rences	7	Acce	ptable Solution E1/AS1	33	
	Dofir	nitions	9	1.0	Limitations of the Solution	33	
			C C	2.0	Minimum Acceptable Floor Level	33	
		ication Method E1/VM1	11	3.0	Drainage System Materials and		
	1.0	Scope	11		Construction	34	
	2.0	Estimation of Surface Water		3.1	Materials	34	
		Run-off	11	3.2	Sizing of drains	34	
	2.1	Run-off coefficient	12	3.3	Alignment and gradient of drains	34	
Amend 4	2.2	Rainfall intensity	12	3.4	Minimum gradients	34	
Dec 2000	2.3	Time of concentration	13	3.5	Jointing of drains	36	
	3.0	Sizing of Surface Water System		3.6	Surface water inlets to drains	36	
	3.1	Minimum size of drains	16	3.7	Access for maintenance	37	
	3.2	Hydraulic design	16	3.8	Testing of drains	39	
	3.3	Pipe materials	17	3.9	Bedding and backfilling	39	
	4.0	Secondary Flow	17	4.0	Downpipes	42	
	4.1	Secondary flow from a piped sur		4.1	Materials	42	
		water drainage system upstream the site	101 18	4.2	Sizing of downpipes	42	
	4.2	Secondary flow from an open wa		4.3	Installation of downpipes	42	
		course upstream of the site	24	5.0	Roof Gutters	42	
	4.3	Secondary flow from site to		5.1	Size of roof gutter	42	
		downstream drainage system	27	5.2	Materials	44	
	5.0	Energy Losses Through Structu	ires 27	5.3	Gradients	44	
	6.0	Minimum Velocity	27	5.4	Thermal movement	44	
	7.0	Outfall Protection	29	5.5	Overflow outlets	44	
	8.0	Drain Leakage Tests	29	E1/A	S1 Appendix A		Ι
	8.1	Water test	29		all intensities	45	
	8.2	Low pressure air test	29	Acce	ptable Solution E1/AS2	52	
	8.3	High pressure air test	30	1.0	AS/NZS 3500.3 Stormwater		
mend 4 ec 2000	9.0	Disposal to soak pit	30		drainage	52	
				Inde	ĸ	56	

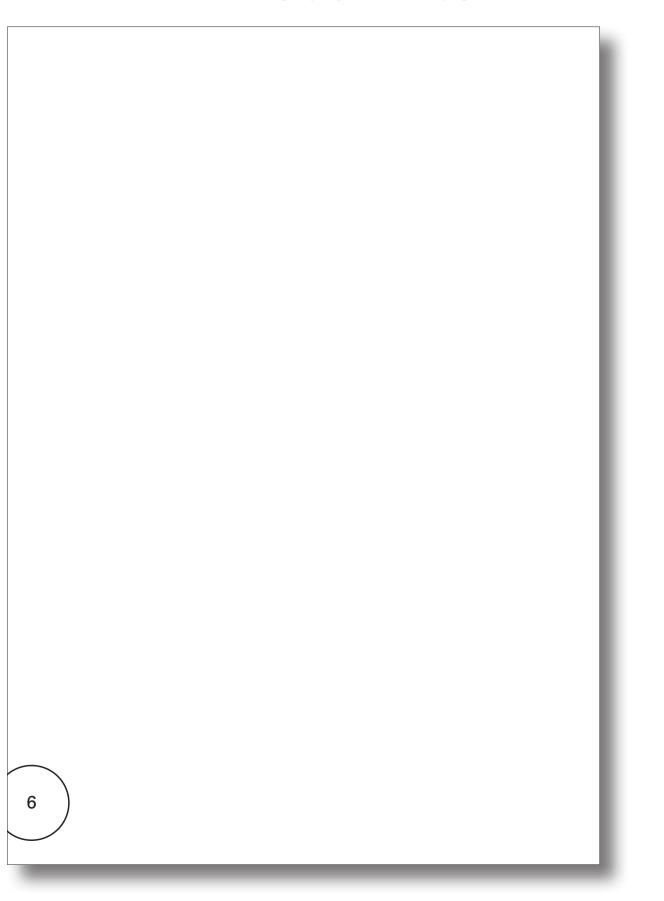
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

5 November 2020

5

-			
	F	Page	
Refe	rences	7	Accep
Defi	nitions	9	1.0
Varia	ication Method E1/VM1	11	2.0
	•••••	11	3.0
1.0	Scope Estimation of Surface Water		
2.0	Estimation of Surface Water Bun-off	11	3.1
2.1	Run-off coefficient	12	3.2
2.2	Rainfall intensity	12	3.3
2.2	Time of concentration	13	3.4
3.0	Sizing of Surface Water System	16	3.5
3.1	Minimum size of drains	16	3.6
3.2	Hydraulic design	16	3.7
3.2 3.3	, 0	17	3.8
	Pipe materials		3.9
4.0	Secondary Flow	17	4.0
4.1	Secondary flow from a piped surface water drainage system upstream o		4.1
	the site	18	4.2
4.2	Secondary flow from an open wate	r	4.3
	course upstream of the site	24	5.0
4.3	Secondary flow from site to		5.1
	downstream drainage system	27	5.2
5.0	Energy Losses Through Structure	s 27	5.3
6.0	Minimum Velocity	27	5.4
7.0	Outfall Protection	29	5.5
8.0	Drain Leakage Tests	29	E1/AS
8.1	Water test	29	Rainfa
8.2	Low pressure air test	29	Accep
8.3	High pressure air test	30	1.0
9.0	Disposal to soak pit	30	

Index


SURFACE WATER

	Page	
ptable Solution E1/AS1	33	
Limitations of the Solution	on 33	
Minimum Acceptable Flo	or Level 33	
Drainage System Materia Construction	lls and 34	
Materials	34	
Sizing of drains	34	
Alignment and gradient of o	drains 34	
Minimum gradients	34	
Jointing of drains	36	
Surface water inlets to drai	ns 36	
Access for maintenance	37	
Testing of drains	39	
Bedding and backfilling	39	
Downpipes	42	
Materials	42	
Sizing of downpipes	42	
Installation of downpipes	42	
Roof Gutters	42	
Size of roof gutter	42	
Materials	44	
Gradients	44	
Thermal movement	44	
Overflow outlets	44	
S1 Appendix A all intensities	45	
ptable Solution E1/AS2	52	
AS/NZS 3500.3 Stormwa	ter	
drainage	52	Amend ²
x	56	Nov 202

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Proposed E1 Surface Water - No changes proposed to this page

6

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red)

Arrent 1 For the purposes of New Zealand Subday Code NZEC Comparison, the Standards and documents, insted below. Where these primary reference documents refer to other Standards or documents, listed below. Where these primary reference documents, which in turn may also refer to other Standards or documents, and so on lower-order reference documents), then the version in effect at the date of publication of this Verification Method and Acceptable Solutions must be used. Arrent 1 Where quoted Standards New Zealand Where quoted NZS/RS 990 Specification for wrought steels for mechanical and approxements for carbon, ca		References E1/VM1 & AS1/AS2	SURFACE WATER	
Ameritian Profit the Subfactors University in the Subfactors Sub		References		
Standards New Zealand NZS/BS 970: Specification for wrought steels for mechanical and allifed exampling purposes As 1 Table 4, Table 4, Table 6, Table 6, Table 6, Table 6, Table 7, Tabl	Sep 1993 Amend 8	documents referenced in this Verification Method and Acceptable Solution documents) must be the editions, along with their specific amendments, these primary reference documents refer to other Standards or document reference documents), which in turn may also refer to other Standards of (lower-order reference documents), then the version in effect at the date	ns (primary reference listed below. Where its (secondary r documents, and so on	Amend 9 Feb 2014 Amend Nov 202 Amend 7 Sep 2010 Amends 9 and 11
Arrend 1 General Sep 1001 ASI Table 4, Table 6 Arrend 1 Sep 1001 ASI/X2S 1254: 2010 PVC pipes and fittings for stormwater and surface water applications Arrend 1 ASI Table 1, Table 3 Arrend 1 Sep 1001 ASI/X2S 1254: 2010 PVC pipes and fittings for stormwater and surface water applications Arrend 1, 2 ASI/X2S 1254: 2010 PVC pipes and fittings for drain, waste and went applications ASI Table 1, Table 3 Arrend 1 Arrend 0 Arrend 1 Arrend			Where quoted	
Armond 1 Asing a conserved of the sequence of th	1	<hr/>		1
Ammedia Ammedia Ammedia AS/NZS 1254: 2010 EVC pipes and fittings for stormwater and surface water applications AS1 Table 1, Table 3 Ammedia AS/NZS 1260: 2017 PVC-U Pipes and fittings for drain, waste and vent application AS1 Table 4, Table 4, Table 6 Astronomic AS/NZS 1734: 1997 Aluminium and aluminium alloys – Flat sheets, coiled sheet and plate AS1 Table 4, Table 6 Astronomic AS/NZS 2032: 2006 Installation of PVC Pipe Systems AS1 Table 3, 3.9.8 Ammedia AS/NZS 2032: 2008 Installation of polyethylene pipe systems AS1 Table 3, as.9 Ammedia AS/NZS 2280: 2014 Ductile iron pipes and fittings AS1 Table 1, Table 6 Astronomic 1 AS/NZS 2032: 2008 Installation of polyethylene pipe systems AS1 Table 3 Ammedia As/NZS 2280: 2014 Ductile iron pipes and fittings AS1 Table 3 AS1 Table 3 Asingita As/NZS 2566:- Buried Flexible pipelines AS1 3.9.8 AS1 3.9.8 AS1 3.9.8 Astronomic Armedia Asingita Asingita Asingita Asingita Asingita Asynzs 2566:- Buried Flexible pipelines Part 3: 2002 Armedia Asingita Asingita		allied ongineering purposes Part 1: 1991 General inspection and testing procedures and specific requirements for carbon, carbon		
Amend 7 serverds 9, 10, 11 water applications Amend: 1, 2 Table 3 Asynzs 1260: 2017 PVC-U Pipes and fittings for drain, waste and vent application ASI Table 1, Table 4 Asynzs 1260: 2017 PVC-U Pipes and fittings for drain, waste and vent application ASI Table 1, Table 4 Asynzs 1734: 1997 Aluminium and aluminium alloys – Flat sheets, coiled sheet and plate ASI Table 3, ASI Table 3, 3.9.8 Amend 8 Oct 2011 AS/NZS 2032: 2006 Installation of PVC Pipe Systems Amend: 1, AS/NZS 2033: 2008 Installation of polyethylene pipe systems Amend: 1, Asynzs 2280.2014 ASI Table 3, ASI Table 3 Arrend 8 0 ct 2011 AS/NZS 2280.2014 Ductile iron pipes and fittings Amend: 1, Asynzs 22666:- Buried Flexible pipelines Part 1: 1998 ASI Table 1, Table 3 Asynzs 2566:- Part 3: 2002 Buried Flexible pipelines Part 3: 2018 ASI Table 3, ASI 3.9.8, ASI 3.9.8, ASI 3.9.8, Table 3 Asynzs 3500:- Part 3: 2018 Plumbing and drainage Part 3: 2018 ASI 7, ASI 3.9.7 Asynzs 4058: 2007 Precast concrete pipes (pressure and non-pressure) ASI Table 1 ASI Table 1 Asynzs 4130: 2018 Polyethylene (PE) pipes for pressure applications ASI Table 1 Asynzs 4130: 2018 Polyethylene (PE) pipes for pressure applications ASI Table 1				
AS/NZS 1260: 2017 PVC-U Pipes and fittings for drain, waste and vent application AS1 Table 1, Table 4, Table 4 Annexd 8 AS/NZS 1734: 1997 Aluminium and aluminium alloys – Flat sheets, coiled sheet and plate AS1 Table 4, Table 6 Arnexd 8 AS/NZS 2032: 2006 Installation of PVC Pipe Systems AS1 Table 3, 3.9.8 Arnexd 8 AS/NZS 2033: 2008 Installation of polyethylene pipe systems AS1 Table 1, Table 3 Arnexd 8 AS/NZS 2280: [2014] Ductile iron pipes and fittings AS1 Table 3 Arnexd 7 AS/NZS 2566:- Buried Flexible pipelines AS1 3.9.8 Arnerd 7 Sep 2010 Arnerd: 1, 2, 3 AS1 3.9.8 Arnerd 7 Sep 2010 Arnerd: 1, 2, 3 AS1 Table 3 Arnerd 7 Sep 2010 Arnerd: 1, 2, 3 AS1 Table 3 Arnerd 7 Sep 2010 Arnerd: 1, 2, 3 AS1 3.9.8 Arnerd 7 Sep 2010 Arnerd: 1, 2, 3 AS1 3.9.8 Arnerd 8 AS/NZS 3500:- Plumbing and drainage AS1 3.9.7 Arnerd 8 AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) AS1 Table 1 AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1 Arnered 8 AS10.11 AS1	Feb 2014 Amend 10	water applications		
Amend 8 Oct 2011 Coiled sheet and plate Table 6 As/NZS 2032: 2006 Installation of PVC Pipe Systems AS1 Table 3, 3.9.8 Amend 8 Oct 2011 As/NZS 2033: 2008 Installation of polyethylene pipe systems AS1 Table 3 Amends 8 Oct 2011 As/NZS 2280: 2014 Ductile iron pipes and fittings AS1 Table 1, Table 3 Amends 9, 10, 11 As/NZS 2266: Buried Flexible pipelines Part 1: 1998 Astructural Design Amends 10 and 11 As/NZS 3500:- Plumbing and drainage Part 3: 2018 Astructural drainage Amends 10 and 1 NZS 3604: 2011 Timber framed buildings AS1 3.9.7 Amends 1, 4, 7, 8, 9 As/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) Asj, 10, 11 Asj NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications				Amend 11 Nov 2020
Amend: 1 Amend: 1 Armend: 8 AS/NZS 2033: 2008 Installation of polyethylene pipe systems AS1 Table 3 Amend: 1, 2 AS/NZS 2280: 2014 Ductile iron pipes and fittings AS1 Table 1, Table 3 Amend: 9, 10, 11 AS/NZS 2266: Buried Flexible pipelines AS1 Table 3 Amend: 7 Part 1: 1998 Structural Design AS1 3.9.8 Part 2: 2002 Installation AS1 3.9.8, Table 3 AS1 3.9.8, Table 3 Amend: 1 AS/NZS 3500: Plumbing and drainage AS2 1.0, 1.0.1, 1.0.4 AS2 1.0, 1.0.1, 1.0.4 Amend: 1, 4.7.8, 9 NZS 3604: 2011 Timber framed buildings AS1 3.9.7 AS1 3.9.7 Amend: 7 Sep 2010 AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) AS1 Table 1 AS1 3.9.7 Amend: 7 Sep 2010 AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1		coiled sheet and plate	Table 6	
Amend 8 Oci 2011 Amend: 1, 2 Arnends 9,10,11 AS/NZS 2280:2014 Ductile iron pipes and fittings Arnends 9,10,11 AS/NZS 2266: Buried Flexible pipelines Part 1: 1998 Structural Design AS1 3.9.8 Part 2: 2002 Installation AS1 3.9.8 Amend 1 Amend: 1, 2, 3 AS1 3.9.8 Amend 1 Asyntal and 11 AS/NZS 3500:- Plumbing and drainage Part 3: 2018 Stormwater drainage Part 3: 2018 Stormwater drainage AS1 3.9.7 Amenda 1.4, 7, 8, 9 NZS 3604: 2011 Timber framed buildings Asynza AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) Asynza AS1 Table 1 Asynza AS1 Table 1 Asynza AS1 Table 1	0012011	Amend: 1		
Amends 9, 10, 11 Amend: 1 Table 3 Amends 9, 10, 11 As/NZS 2566: Buried Flexible pipelines Part 1: 1998 Structural Design AS1 3.9.8 Part 2: 2002 Installation AS1 3.9.8, Table 3 Amend 11 Part 3: 2018 Stormwater drainage AS2 1.0, 1.0.1, 1.0.4 Amend 11 Nov 2020 NZS 3604: 2011 Timber framed buildings AS1 3.9.7 Amend 7 Sep 2010 AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) AS1 Table 1 Asynx2S 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1	Amend 8 Oct 2011	Amend: 1, 2		
Armend 7 Sep 2010 Amends 10 and 11Part 1: 1998 Part 2: 2002Structural Design Installation Amend: 1, 2, 3ASI 3.9.8 ASI 3.9.8, Table 3Arm OctAmend 11 Nov 2020AS/NZS 3500:- Part 3: 2018Plumbing and drainage Stormwater drainageAS2 1.0, 1.0.1, 1.0.4AS2 1.0, 1.0.1, 1.0.4Amends 1, 4, 7, 8, 9NZS 3604: 2011Timber framed buildingsAS1 3.9.7As1 3.9.7Amend 7 Sep 2010 Amends 8, 9, 10, 11AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) ASI Table 1AS1 Table 1Amend 7 Sep 2010 Amends 8, 9, 10, 11AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applicationsAS1 Table 1				
As/NZS 3500:- Plumbing and drainage Part 3: 2018 Stormwater drainage Asset 1.0, 1.0.1, 1.0.4 Amends 1.4, 7, 8, 9 NZS 3604: 2011 Timber framed buildings AS1 3.9.7 Amend 7 As/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1 Asing and amends 8.9, 10, 11 Asing and amends 1.9, 10, 11	Sep 2010 Amends	Part 1: 1998 Structural Design Part 2: 2002 Installation		Amend 8 Oct 2011
As/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) As/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure) As1 Table 1 As1 Table 1 As1 Table 1 As1 Table 1 As1 Table 1 As1 Table 1	Amend 11			
Amenda 7 Sep 2010 AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1 Amends 8 . 9, 10, 11 AS1, 10, 11 AS1		NZS 3604: 2011 Timber framed buildings	AS1 3.9.7	Amend 5 July 2001
Sep 2010 AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications AS1 Table 1	Amond 7	AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure)	AS1 Table 1	
	Sep 2010 Amends	AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications	AS1 Table 1	
	8 , 9, 10, 11	MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT	5 November 2020	
				\sim

Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)

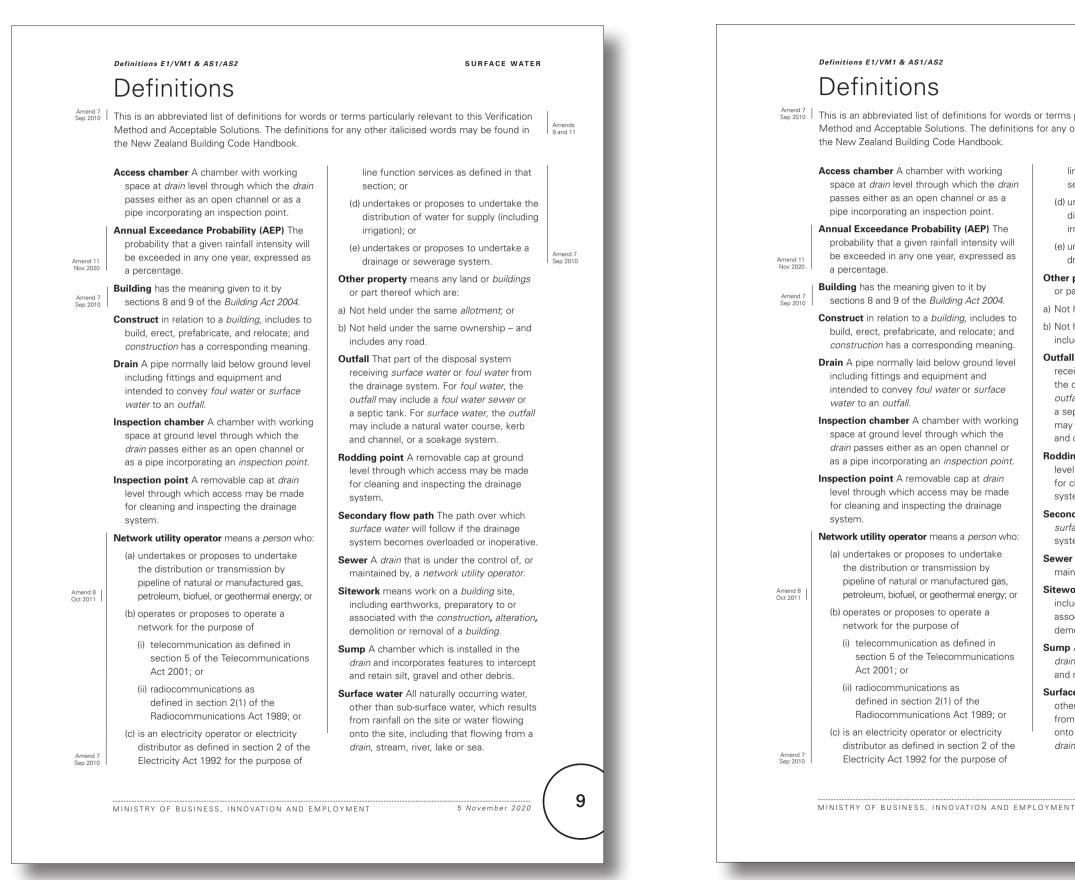
	Refere	nces		
d 1 993 nend 8 st 2011	References For the purposes of New Zealand Building Code (NZBC) compliance, the Standards and documents referenced in this Verification Method and Acceptable Solutions (primary reference documents) must be the editions, along with their specific amendments, listed below. Where these primary reference documents refer to other Standards or documents (secondary reference documents), which in turn may also refer to other Standards or documents, and so on (lower-order reference documents), then the version in effect at the date of publication of this Verification Method and Acceptable Solutions must be used.			Amend 9 Feb 2014 Amend 11 Nov 2020 Amend 7 Sep 2010 Amends 9 and 11
			Where quoted	
	Standards New 2	Zealand		
nd 1 993 nd 9 014 0 7	AS/NZS 1254: 20	10 PVC-U pipes and fittings for stormwater and surface water applications Amend: 1, 2, 3	AS1 Table 1, Table 3	
nds	AS/NZS 1260: 20	17 PVC-U Pipes and fittings for drain, waste and vent application	AS1 Table 1, Table 4	Amend 11 Nov 2020
	AS/NZS 1734: 199	97 Aluminium and aluminium alloys – Flat sheets, coiled sheet and plate	AS1 Table 4, Table 6	
nd 8 011		06 Installation of PVC Pipe Systems Amend: 1	AS1 Table 3, 3.9.8	
id 8 011		8 Installation of polyethylene pipe systems Amend: 1, 2	AS1 Table 3	1
nds 11	AS/NZS 2280: 202	20 Ductile iron pipes and fittings Amend: 1	AS1 Table 1, Table 3	
end 7 2010	AS/NZS 2566:- Part 1: 1998	Buried Flexible pipelines Structural Design <i>Amend: 1</i>	AS1 3.9.8	
end 7 2010 nends nd 11	Part 2: 2002	Installation Amend: 1, 2, 3	AS1 3.9.8, Table 3	Amend 8 Oct 2011
nd 11 2020	AS/NZS 3500:- Part 3: 2021	Plumbing and drainage Stormwater drainage	AS2 1.0, 1.0.1, 1.0.4	
	NZS 3501: 1976	Specifications for copper tubes for water, gas, and sanitation Amends: 1, 2, 3	AS1 Table 4	
nends 7, 8, 9	NZS 3604: 2011	Timber framed buildings	AS1 3.9.7	Amend 5 July 2001
	AS/NZS 4058: 200	07 Precast concrete pipes (pressure and non-pressure)	AS1 Table 1	
nd 7 010 mends 10, 11	AS/NZS 4130: 20	18 Polyethylene (PE) pipes for pressure applications <i>Amend: 1</i>	AS1 Table 1, Table 4	
	MINISTRY OF BUS	SINESS, INNOVATION AND EMPLOYMENT	xx November 2022	(7

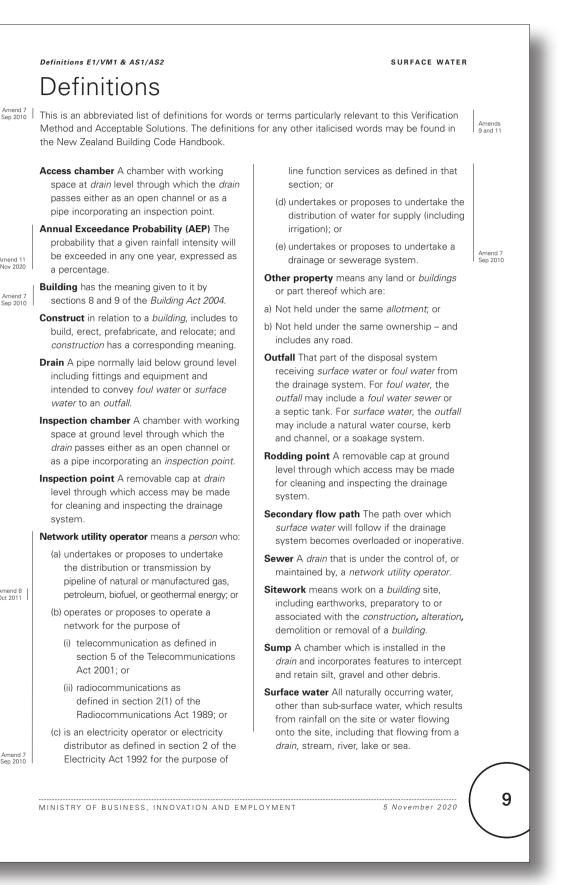
Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)

Amenda 1, 4, 10NZS 4229: 2013Concrete masonry buildings not requiring specific designAS1 3.9.7NZS 4442: 1988Welded steel pipes and fittings for water, sewage and medium pressure gasAS1 Table TableImmed 7 map 2010AS/NZS 5065: 2005 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications Armend: 1, 2AS1 Table TableImmed 7 med 7 ap 2010BS EN 1172: [1997] For buildingCopper and copper alloys – sheet and strip for buildingAS1 Table TableImmed 8 med 7 ap 2010BS EN 1759 Planges and their joints. Part 1: 2004Flanges and their joints. NPS 1/2 to 24.AS1 Table TableImmed 7 ap 2010AS 1273: 1991Unplasticised PVC (UPVC) downpipes and fittings for rainwaterAS1 Table TableInternet 7 ap 2010AS 1397: [2011Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinz and zinc alloyed with aluminium and magnesium AS 1579: 2001As1 table and waste water	eferences E1/VM1 & AS	Ref	SURFACE WATER	
Interdition specific design NZS 4442: 1988 Welded steel pipes and fittings for water, sewage and medium pressure gas ASI Table Table AS/NZS 5065: 2005 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications Amend: 1, 2 ASI Table for building British Standards Institution BS EN 1172: [1997] Copper and copper alloys – sheet and strip for building ASI Table Table BS EN 1759 Flanges and their joints. Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. ASI Table Table Media 1 AS 1397: [2011 Continuous hot-dip metallic coated steel sheet and strip for rainwater ASI Table Table Media 1 AS 1397: [2011 Continuous hot-dip metallic coated steel sheet and strip a 2010 AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water ASI Table Table Media 2 AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water ASI Table Table ASI Table Table Media 2 AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water ASI Table ASI Table Media 2 AS 1579: 2001 Arc welded steel pipes and fittings with flexible joints – sewerage quality ASI Table Media 2 <td< th=""><th>Where quoted</th><th>s not requiring</th><th>NZS 4229: 2013 Concre</th><th>1 </th></td<>	Where quoted	s not requiring	NZS 4229: 2013 Concre	1
NZS 4442: 1988 Welded steel pipes and fittings for water, sewage and medium pressure gas AS1 Table Table NZS 4442: 1988 Welded steel pipes and fittings for drainage and sewerage applications Amend: 1, 2 AS1 Table Table British Standards Institution AS1 Table for building AS1 Table Table BS EN 1725 Flanges and their joints. AS1 Table Table Bartish Standards Institution AS1 Table Table AS1 Table Table BS EN 1759 Flanges and their joints. AS1 Table Table Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. AS1 Table Table Med 7 Standards Association of Australia AS1 Table Table AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS1 Table Table AS 1397: [2011 Continuous hot-dip metallic coated steel sheet and strip AS1 Table Table AS 1579: 2001 Acr welded steel pipes and fittings for water and wate water AS1 Table S1 Table AS 1579: 2001 Acr welded steel pipes and fittings with flexible joints – sewerage quality AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table sewerage quality AS 3706:- Geotextiles – Methods of test Part	, (01 0.0.)	notroquinig		
AS/NZS 5065: 2005 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications Armend: 1, 2 AS1 Table British Standards Institution Armend: 1, 2 Bread at 2010 BS EN 1172: 1997 BS EN 1759 Flanges and their joints. Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. mend 7 at 2010 Standards Association of Australia AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinz and zinc alloyed with aluminium and magnesium At 1700 AS 1646: 2007 AS 1646: 2007 Elastomeric seals for waterworks purposes AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4	AS1 Table 1, Table 3	ings for water, sewage		1, 4, 10 I
BS EN 1172: 1997 Copper and copper alloys – sheet and strip AS1 Table Table Table BS EN 1759 Flanges and their joints. Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. need 7 NPS 1/2 to 24. AS1 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS 1273: 1991 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium AS1 1279: 2001 Acc welded steel pipes and fittings for water and waste water AS 1579: 2001 Acc welded steel pipes and fittings with flexible joints – sewerage quality AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS 3706:- Geotextiles – Methods of test Part 1: 2012 Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4	AS1 Table 1		drainag	o 2010 mend 8 / ct 2011 id 11
a 2010 BS EN 1172: 1997 Copper and copper alloys – sheet and strip for building AS1 Table Table BS EN 1759 Flanges and their joints. Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. AS1 Table aread 7 2010 Standards Association of Australia AS1 Table AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS1 Table Table AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium Armend_1 AS1 Table Table AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS1 Table AS 3706:- Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4			British Standards Institu	
Part 1: 2004 Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24. AS1 Table need 7 rain Standards Association of Australia AS1 Table AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS1 Table AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium AS1 Table AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic VM1 9.0.4	AS1 Table 4, Table 6	sheet and strip		2010 nend 8 E
AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings AS1 Table AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings AS1 Table AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings AS1 Table AS 1397: 2010 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium AS1 Table AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic physical properties and statistical analysis VM1 9.0.4	AS1 Table 3	-	Part 1: 2004 Circula	
standards Association of Australia AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS 1646: 2007 Elastomeric seals for waterworks purposes AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS 3706:- Geotextiles – Methods of test physical properties and statistical analysis			NPS 1,	o 2010 I
Standards Association of Australia AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater AS1 Table Table AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium AS1 Table Table AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table AS 3706:- Part 1: 2012 General requirements, sampling, conditioning, basic physical properties and statistical analysis VM1 9.0.4				t 2011
AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater Table AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinz and zinc alloyed with aluminium and magnesium Amend: 1 AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS 1646: 2007 Elastomeric seals for waterworks purposes AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS 3706:- Part 1: 2012 General requirements, sampling, conditioning, basic physical properties and statistical analysis VM19.0.4			Standards Association o	²⁰¹⁰
d11 strip – Coatings of zinz and zinc alloyed with aluminium and magnesium Table All 1000 Arc welded steel pipes and fittings for water and waste water AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table As 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS3 706:- As 3706:- Geotextiles – Methods of test Part 1: 2012 Part 1: 2012 General requirements, sampling, conditioning, basic physical properties and statistical analysis VM19.0.4	AS1 Table 4, Table 6	downpipes and fittings		2010 I
Amend: 1 Amend: 1 AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water AS1 Table AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table AS 3706:- Part 1: 2012 Geotextiles – Methods of test physical properties and statistical analysis VM1 9.0.4	AS1 Table 4, Table 6		strip –	
and waste water and waste water AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table and waste water AS1 Table AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS1 Table AS1 Table Sewerage quality VM1 9.0.4 Part 1: 2012 General requirements, sampling, conditioning, basic VM1 9.0.4 Physical properties and statistical analysis VM1 9.0.4 Sewerage		<u></u>		2020 I
AS 1646: 2007 Elastomeric seals for waterworks purposes AS1 Table AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic physical properties and statistical analysis	AST TADIE T	nttings for water		
AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4 physical properties and statistical analysis	AS1 Table 3			2010 /
AS 3706:- Geotextiles – Methods of test Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4 physical properties and statistical analysis	AST TADIE I	igs with hexible joints –		
Part 1: 2012 General requirements, sampling, conditioning, basic VM19.0.4 physical properties and statistical analysis				2010 I
New Zealand Legislation	VM19.0.4	pling, conditioning, basic	Part 1: 2012 Genera	nds 11 nend 4
			New Zealand Legislation	l
Resource Management Act 1991 VM12.1.2	VM12.1.2		Resource Management Ad	F
5 November 2020 MINISTRY OF BUSINESS, INNOVATION AND EN	ATION AND EMPLOY	RY OF BUSINESS, INNOVA	5 November 2020	

Amends	NZS 4229: 2013	Concrete masonry buildings not requiring specific design	Where quoted AS1 3.9.7
1, 4, 10	NZS 4442: 1988	Welded steel pipes and fittings for water, sewage and medium pressure gas	AS1 Table 1, Table 3
Amend 7 Sep 2010 Amend 8 Oct 2011 mend 11 Nov 2020	AS/NZS 5065: 2005	Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications <i>Amend: 1, 2</i>	AS1 Table 1
A	British Standards	Institution	
Amend 7 Sep 2010 Amend 8 Oct 2011	BS EN 1172: 2011	Copper and copper alloys – sheet and strip for building purposes	AS1 Table 4, Table 6
Amend 7 Sep 2010	BS EN 1759 Part 1: 2004	Flanges and their joints. Circular flanges for pipes, valves, fittings and accessories, class-designated. Steel flanges, NPS 1/2 to 24.	AS1 Table 3
Amend 8 Oct 2011			
Amend 7 Sep 2010	Standards Associ	ation of Australia	
Amend 7 Sep 2010	40.4070.4004		
	AS 1273: 1991	Unplasticised PVC (UPVC) downpipes and fittings for rainwater	AS1 Table 4, Table 6
Amends	AS 1397: 2021	Continuous hot-dip metallic coated steel sheet and strip – Coatings of zinc and zinc alloyed with aluminium and magnesium	AS1 Table 4, Table 6
7 and 11			
	AS 1432: 2004	Copper tubes for plumbing, gasfitting and drainage applications	AS1 Table 4
	AS 1528:	Stainless steel tubes and tube fittings for food processing and hygienic applications	
	Part 1: 2019	Tubes	AS1 Table 4
	AS 1566: 1997	Copper and copper alloys – Rolled flat products	AS1 Table 4, Table 6
	AS 1579: 2001	Arc welded steel pipes and fittings for water and waste water	AS1 Table 1
Amend 7 Sep 2010	AS 1646: 2007	Elastomeric seals for waterworks purposes	AS1 Table 3
Amend 7 Sep 2010	AS 1741: 1991	Vitrified clay pipes and fittings with flexible joints - sewerage quality	AS1 Table 1
8	xx November 202	22 MINISTRY OF BUSINESS, INNOVA	ATION AND EMPLOYMENT


urrent E1 Surface Water acceptable solutions and verification methods Fext to be amended shown in red)	Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)	1
	References E1/VM1 & AS1/AS2 SURFACE WATER	
	Where quoted	
	AS 1866: 1997 Aluminium and alumunium alloys – Extruded rod, AS1 Table 4 bar, solid and hollow shapes	
	Amends 7 and 11 Amenda Part 1: 2000AS 3706:- Part 1: 2012Geotextiles – Methods of test General requirements, sampling, conditioning, basic physical properties and statistical analysisVM19.0.4	
	American Society for Testing and Materials	
	ASTM A240/A240M:2020 Standard Specification for Chromium and AS1 Table 4, Chromium-Nickel Stainless Steel Plate, Sheet, and Table 6 Strip for Pressure Vessels and for General Applications	
	New Zealand Legislation	
	Resource Management Act 1991 VM12.1.2	
	MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT xx November 2022	


Current E1 Surface Water acceptable solutions and verification methods	Proposed amendments to E1 Surface Water ac verification methods
	SURFACE WATER
	8B

cceptable solutions and

Proposed E1 Surface Water - No changes proposed to this page

Current E1 Surface Water - No changes proposed to this page Proposed E1 Surface Water - No changes proposed to this page SURFACE WATER SURFACE WATER Definitions E1/VM1 & AS1 Territorial authority (TA) means a city council Territorial authority (TA) means a city council or district council named in Part 2 or district council named in Part 2 of Schedule 2 of the Local Government of Schedule 2 of the Local Government Act 2002; and— Act 2002; and a) in relation to land within the district a) in relation to land within the district of a territorial authority, or a building of a territorial authority, or a building on or proposed to be built on any such on or proposed to be built on any such land, means that territorial authority; and land, means that territorial authority; and b) in relation to any part of a coastal marine b) in relation to any part of a coastal marine area (within the meaning of the area (within the meaning of the Resource Management Act 1991) that Resource Management Act 1991) that is not within the district of a territorial is not within the district of a territorial authority, or a building on or proposed authority, or a building on or proposed to be built on any such part, means the to be built on any such part, means the territorial authority whose district is territorial authority whose district is Amend 7 Sep 2010 Amend 7 Sep 2010 adjacent to that part. adjacent to that part. **Trap** A chamber which is installed in the *drain* **Trap** A chamber which is installed in the *drain* and incorporates features to intercept and and incorporates features to intercept and retain floatable debris. retain floatable debris.

DEPARTMENT OF BUILDING AND HOUSING

10

30 September 2010

30 September 2010

10

Definitions E1/VM1 & AS1

DEPARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

Verification Method E1/VM1

SURFACE WATER

Verification Method E1/VM1 (Revised by Amendment 4)

1.0 Scope

1.0.1 This Verification Method shall be used only if the territorial authority does not have more accurate data available from sophisticated hydrological modelling of the catchment undertaken as part of its flood management plans.

1.0.2 The following approach provides a method for verifying that a proposed building will meet the requirements of NZBC E1.3.1 and E1.3.2 in the following circumstances:

- a) The catchment area does not exceed 100 ha (but see Paragraph 1.0.6 for soak pits), and
- b) The *surface water* results only from rainfall on the catchment and does not include water from other sources such as inundation from rivers lakes or the sea
- 1.0.3 The method describes how to determine
- a) The volume of *surface water* arriving at the *building* site from upper areas of the catchment (see Paragraph 2.0),
- b) The size of *drains* necessary to remove *surface water* from the *building* site (see Paragraph 3.0), and
- c) The nature and volume of secondary flows likely to reach the building 1 from overloaded culverts. drains or open channels in the upper catchment (see Paragraph 4.0)

1.0.4 The procedure described for sizing drains only applies where free flow occurs at the outlet. The outlet must not be restricted by hydraulic impediments such as control gates, a pump station, or submerged outlets in a river, a lake or the sea.

COMMENT:

The capacity of *drains* which do not have a free flowing outlet shall be calculated by specific design in a manner which incorporates the effect of the restriction.

1.0.5 A method is provided for determining appropriate outfall protection.

DEPARTMENT OF BUILDING AND HOUSING

1.0.6 A procedure is provided for determining soak pit requirements for surface water disposal. Such disposal is subject to suitable ground conditions, as confirmed by site tests.

COMMENT:

- 1. Where soak pits are used the overall ground stability may need to be verified but this is outside of the scope of this Verification Method.
- 2. Soak pit surface water disposal may require a resource management consent

1.0.7 The design procedures in this document must be performed by a *person* who, on the basis of experience or qualifications, is competent to apply them.

1.0.8 This document makes no allowance for blockages to the intakes of *drains* or culverts. The procedures of this document shall only be used where the designer demonstrates that this approach is justified for the particular building work under consideration.

COMMENT

The likelihood of blockage and the resulting risks will vary from project to project and need to be considered by the designer before applying this document.

1.0.9 The "Comments" in this document provide comment, background or general information but do not form part of this Verification Method

2.0 Estimation of Surface Water Run-Off

2.0.1 Surface water run-off for the catchment shall be calculated using the Rational Method. The formula to be used is:

 $Q_c = CIA_c/360$

where

- $Q_c = \text{catchment run-off (m}^3/\text{s}).$
- C = run-off coefficient (see Table 1)
- I = rainfall intensity (mm/hr).
- A = area (hectares) of catchment above the point being considered.

1 December 2000

11

Verification Method E1/VM1 (Revised by Amendment 4)

Verification Method F1/VM1

1.0 Scope

1.0.1 This Verification Method shall be used only if the territorial authority does not have more accurate data available from sophisticated hydrological modelling of the catchment undertaken as part of its flood management plans.

1.0.2 The following approach provides a method for verifying that a proposed building will meet the requirements of NZBC E1.3.1 and E1.3.2 in the following circumstances:

- a) The catchment area does not exceed 100 ha (but see Paragraph 1.0.6 for soak pits), and
- b) The *surface water* results only from rainfall on the catchment and does not include water from other sources such as inundation from rivers, lakes or the sea.

1.0.3 The method describes how to determine

- a) The volume of *surface water* arriving at the building site from upper areas of the catchment (see Paragraph 2.0).
- b) The size of *drains* necessary to remove surface water from the building site (see Paragraph 3.0), and
- c) The nature and volume of secondary flows likely to reach the *building* 1 from overloaded culverts, drains or open channels in the upper catchment (see Paragraph 4.0).

1.0.4 The procedure described for sizing *drains* only applies where free flow occurs at the outlet. The outlet must not be restricted by hydraulic impediments such as control gates, a pump station, or submerged outlets in a river, a lake or the sea.

COMMENT:

The capacity of *drains* which do not have a free flowing outlet shall be calculated by specific design in a manner which incorporates the effect of the restriction

1.0.5 A method is provided for determining appropriate outfall protection.

DEPARTMENT OF BUILDING AND HOUSING

SURFACE WATER

1.0.6 A procedure is provided for determining soak pit requirements for surface water disposal. Such disposal is subject to suitable ground conditions, as confirmed by site tests.

COMMENT:

1. Where soak pits are used the overall ground stability may need to be verified but this is outside of the scope of this Verification Method.

2. Soak pit surface water disposal may require a resource management consent.

1.0.7 The design procedures in this document must be performed by a person who, on the basis of experience or gualifications, is competent to apply them

1.0.8 This document makes no allowance for blockages to the intakes of *drains* or culverts. The procedures of this document shall only be used where the designer demonstrates that this approach is justified for the particular building work under consideration.

COMMENT:

The likelihood of blockage and the resulting risks will vary from project to project and need to be considered by the designer before applying this document.

1.0.9 The "Comments" in this document provide comment, background or general information but do not form part of this Verification Method

2.0 Estimation of Surface Water Run-Off

2.0.1 Surface water run-off for the catchment shall be calculated using the Rational Method. The formula to be used is:

- $Q_c = CIA_c/360$
- where
- $Q_c = \text{catchment run-off (m}^3/\text{s}).$
- C = run-off coefficient (see Table 1)
 - = rainfall intensity (mm/hr).
- A_{c} = area (hectares) of catchment above the point being considered.

1 December 2000

11

С

0.70

0.40

0.35

0.30

0.30

0.25

0.20

0.20

0.15

0.10

0.30

0.25

0.25

0.90

0.85

0.80

0.80

0.60

0.50

0.35

0.65

0.45

0.55

Proposed E1 Surface Water - No changes proposed to this page

C 11	DEA	CE	WA	TED

Description of surface

Natural surface types

Heavy clay soil types:

cultivated

- cultivated

cultivated

mainly grassed

Gardens, lawns, etc.

roof surfaces

paving panels - with sealed joints

Unsealed roads

similar surfaces

Land use types

- with open joints

- predominantly bush

Developed surface types

soil types:

Amend 10 Jan 2017

Amend 10 Jan 2017 channels or run-off control

- pasture and grass cover

bush and scrub cover

Medium soakage soil types:

- pasture and grass cover

- bush and scrub cover

pasture and grass cover

Parks, playgrounds and reserves:

- bush and scrub cover

High soakage gravel, sandy and volcanic

Fully roofed and/or sealed developments 0.90

Steel and non-absorbent roof surfaces

Asphalt and concrete paved surfaces

Near flat and slightly absorbent

Stone, brick and precast concrete

Railway and unsealed yards and

Industrial, commercial, shopping areas and town house developments

area is less than 36% of gross area

area is 36% to 50% of gross area

2.1 Run-off Coefficient

1 January 2017

Residential areas in which impervious

Residential areas in which the impervious

Where the impervious area exceeds 50% of gross area, use method of Paragraph 2.1.2.

2.1.1 Table 1 lists run-off coefficients

appropriate to a variety of land uses and soil

Run-off Coefficients

Bare impermeable clay with no interception

Bare uncultivated soil of medium soakage 0.60

agraphs 2.<u>0.1, 2.1.1, 2.1.3</u>

characteristics. For catchments having a mixture of different types, the run-off coefficient shall be determined by averaging the value for individual parts of the catchment by using the formula:

Verification Method E1/VM1

 $C = \frac{\sum C_i A_i}{A_i}$

where

- C = the run-off coefficient for the catchment. C_i = the run-off coefficient for a particular
- land use.
- A_i = the area of land to which C_i applies.
- A_c = the catchment area.

COMMENT:

- The run-off coefficient C is the variable in the rational formula least able to be precisely determined, and represents the integrated effects of such things as infiltration, storage, evaporation, natural retention and interception, all of which affect the time distribution and peak rate of run-off.
- The run-off coefficients given in Table 1 assume saturated ground conditions from previous rain, and shall be used in the calculation of *surface water* run-off.

2.1.2 The chosen run-off coefficient shall be based on the conditions likely to exist after the full catchment development allowable by the operative plan under the Resource Management Act 1991.

2.1.3 Slope correction

The values of run-off coefficient given in Table 1 shall be adjusted for slope in accordance with Table 2.

COMMENT:

The values in Table 1 assume an average sloping terrain of 5-10% (i.e. gently rolling). However, if the terrain is flatter or steeper this will have the effect of slowing down or speeding up overland flow. The above adjustment allows for this.

2.2 Rainfall intensity

2.2.1 The rainfall intensity shall be that for a storm having a duration equal to the time of concentration as determined by Paragraph 2.3.1, and a probability of occurrence as given by NZBC E1.3.1 or E1.3.2 as appropriate. Either local rainfall intensity curves produced by the *territorial authority* or rainfall frequency

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Table 1: Run-off Coefficients	-	characterist
Paragraphs 2.0.1, 2.1.1, 2.1.3		a mixture o coefficient s
Description of surface	с	the value fo
Natural surface types		by using the
Bare impermeable clay with no interception channels or run-off control	0.70	$C = \frac{s C_i A_i}{\Delta}$
Bare uncultivated soil of medium soakage	0.60	$C = \frac{A_c}{A_c}$
Heavy clay soil types:		
- pasture and grass cover	0.40	where
 bush and scrub cover cultivated 	0.35 0.30	C = the
Medium soakage soil types:		$C_i = the$
- pasture and grass cover	0.30	land
 bush and scrub cover cultivated 	0.25 0.20	A _i = the
ligh soakage gravel, sandy and volcanic	0.20	
oil types:		$A_c = the$
 pasture and grass cover bush and scrub cover 	0.20 0.15	COMMENT:
- cultivated	0.15	1. The run-off formula lea
arks, playgrounds and reserves:	_	represents
- mainly grassed	0.30	infiltration,
– predominantly bush Bardens, lawns, etc.	0.25 0.25	interceptior and peak ra
	0.23	2. The run-off
eveloped surface types ully roofed and/or sealed developments	0.90	saturated g
teel and non-absorbent roof surfaces	0.90	shall be use run-off.
sphalt and concrete paved surfaces	0.85	
ear flat and slightly absorbent		2.1.2 The c
oof surfaces	0.80	based on th the full cate
Stone, brick and precast concrete aving panels		the operativ
- with sealed joints	0.80	Manageme
- with open joints	0.60	2.1.3 Slope
Jnsealed roads	0.50	
Railway and unsealed yards and similar surfaces	0.35	The values Table 1 sha
and use types		accordance
ndustrial, commercial, shopping areas	0.65	
nd town house developments	0.65	COMMENT: The values in
Residential areas in which the impervious rea is less than 36% of gross area	0.45	of 5-10% (i.e.
Residential areas in which impervious		flatter or stee
area is 36% to 50% of gross area	0.55	down or spee adjustment al
lote: Vhere the impervious area exceeds 50% of gro	ISS	2.2 Rainf
rea, use method of Paragraph 2.1.2.		
		2.2.1 The ra storm havir
		concentrati
1 Run-off Coefficient		2.3.1, and a
		by NZBC E
1.1 Table 1 lists run-off coefficients propriate to a variety of land uses a	nd soil	Either local
propriate to a variety of land uses a	10 301	by the terri
		RY OF BUSINES

Amend 10 Jan 2017

Amend 10 Jan 2017

12

12

Verification Method E1/VM1

tics. For catchments having of different types, the run-off shall be determined by averaging or individual parts of the catchment he formula:

run-off coefficient for the catchment.

e run-off coefficient for a particular d use.

e area of land to which C_i applies. e catchment area.

f coefficient C is the variable in the rational ast able to be precisely determined, and the integrated effects of such things as storage, evaporation, natural retention and n, all of which affect the time distribution ate of run-off.

coefficients given in Table 1 assume ground conditions from previous rain, and ed in the calculation of *surface water*

chosen run-off coefficient shall be he conditions likely to exist after chment development allowable by ve plan under the Resource ent Act 1991.

correction

of run-off coefficient given in all be adjusted for slope in e with Table 2.

Table 1 assume an average sloping terrain . gently rolling). However, if the terrain is sper this will have the effect of slowing adding up overland flow. The above llows for this.

fall intensity

ainfall intensity shall be that for a ng a duration equal to the time of ion as determined by Paragraph a probability of occurrence as given (1.3.1 or E1.3.2 as appropriate. I rainfall intensity curves produced *itorial authority* or rainfall frequency

S, INNOVATION AND EMPLOYMENT

Proposed E1 Surface Water - No changes proposed to this page

Verification Method E1/VM1 SURFACE WATER duration information produced by NIWA shall t_{c} = time (minutes) of network flow be used to determine the rainfall intensity. (comprising flow in pipes and open channels), to the design point. COMMENT: Rainfall intensity curves are available for most areas. COMMENT: These have been developed from meteorological data. In some catchments due to shape, surface water Rainfall frequency-duration tables for each official rain network and varying permeabilities within the gauge throughout New Zealand are also available. catchment, part of the catchment under consideration may produce a higher peak flow than the whole of the Rainfall intensity data is also available online in catchment. Although the area for the part catchment is digital form from the National Institute for Water and smaller, this may be more than offset by the higher Atmospheric Research (NIWA) High Intensity Rainfall intensity storm associated with a shorter time of Design System (HIRDS) concentration and storm duration. This situation will generally arise where the lower reaches of a catchment HIRDS provides rainfall intensity estimates for any are densely developed. location in New Zealand based on historical rain gauge data and also projections of future rainfall intensities for 2.3.2 Time of entry t_e various climate change scenarios The time of entry ta Where differing design rainfall intensities are provided a) Where the catchment area has a well for a particular location, the most conservative rainfall defined and regularly repeated pattern for Amend 11 Nov 2020 intensity should be used for design calculations. directing the surface water to the drain or Slope Correction for Run-off Coefficie Table 2: open channel, the time of entry may be taken as: $t_e = 5$ minutes for commercial or Ground slope Adjust C by: industrial areas where greater than 0-5% subtracting 0.05 50% of the surface of the catchment 5-10% no adjustment area feeding the *drain* or open channel 10-20% 0.05 adding consists of roofed, asphalt, concrete, 20% or steeper adding 0.10 paved or metalled surfaces. $t_e = 7$ minutes for residential areas where the impervious area exceeds 2.3 Time of concentration 50% of gross area. t_e = 10 minutes for low density residential **2.3.1** The time of concentration used to areas where the impervious area is determine rainfall intensity is the time taken for *surface water* run-off from the furthest 36% to 50% of gross area. point (in time) of the catchment to reach the b) Where the catchment does not have a well design point. Flow time calculations shall take defined and regularly repeated pattern or account of catchment run-off coefficients and where the catchment is longer than 1.0 km, slopes. the time of entry te shall be the sum of the Time of concentration for the catchment t_c time of overland flow and, if applicable, the time of road channel flow as given in i) and (minutes) shall be calculated from the formula: ii) below $t_{2} = t_{2} + t_{4}$ i) the time of overland flow shall be but shall be no less than 10 minutes. determined by the formula: Where t = 100 nL^{0.33}/s^{0.2} t_e = time of entry (minutes) which is the

run-off time for overland travel (i.e. via ground, roofs, downpipes, carriageways or road channels) to the point of entry to a drain or open channel.

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

- where
- t = time (minutes).
- L = length of overland flow (m).

5 November 2020

13

duration informatio be used to determine COMMENT: Rainfall intensity curves These have been deve Rainfall frequency-duration gauge throughout New Rainfall intensity data is digital form from the N Atmospheric Research Design System (HIRDS) HIRDS provides rainfall location in New Zealan data and also projection various climate change	ine the rainfall inter s are available for mos loped from meteorolog tion tables for each off / Zealand are also avail s also available online i lational Institute for Wa (NIWA) High Intensity 5).	nsity. t areas. gical data. iicial rain able. n ater and	t _f = tin (c cł COMME In some network catchme may proc catchme smaller, t
Rainfall intensity curve: These have been deve Rainfall frequency-dura gauge throughout New Rainfall intensity data is digital form from the N Atmospheric Research Design System (HIRDS HIRDS provides rainfall location in New Zealan data and also projection	loped from meteorolog tion tables for each off / Zealand are also avail s also available online i lational Institute for Wa (NIWA) High Intensity 5).	gical data. ricial rain able. n ater and	COMME In some network catchme may prod catchme
digital form from the N Atmospheric Research Design System (HIRDS HIRDS provides rainfall location in New Zealan data and also projection	lational Institute for Wa (NIWA) High Intensity 5). I intensity estimates fo	ater and	may proc catchme
location in New Zealan data and also projection			intensity concentr
		ain gauge	generally are dens 2.3.2 Ti The tim
Where differing design for a particular location intensity should be use	, the most conservativ	e rainfall	a) Whe defir direc
Paragraph Ground slope		coefficients	oper taker t _e =
Adjust C by: 0-5% 5-10% 10-20% 20% or steeper	subtracting no adjustment adding adding	0.05 0.05 0.10	
2.3 Time of con	centration		t _e =
determine rainfall i	ntensity is the time	e taken	t _e =
point (in time) of th design point. Flow	ne catchment to rea time calculations s	ach the shall take	b) Whe defir whe the t
		-	time time
$t_c = t_e + t_f$ but shall be no less	s than 10 minutes.		ii) be i)
Where			
run-off time f ground, roofs or road chann	for overland travel (s, downpipes, carrianels) to the point of	i.e. via ageways	
	Table 2:Stope Co ParagrapGround slope Adjust C by:0-5% 5-10% 10-20% 20% or steeper2.3Time of con con2.3.1The time of co determine rainfall in for surface water or point (in time) of th design point. Flow account of catchm slopes.Time of concentrate (minutes) shall be of t_c = t_e + t_f but shall be no less: Where t_e = time of entry run-off time f ground, roofs or road change	Table 2: Stope Correction for Run-off C Paragraph 2.1.3 Ground slope Adjust C by: 0-5% subtracting 5-10% no adjustment 10-20% adding 20% or steeper adding 2.3 Time of concentration 2.3.1 The time of concentration used determine rainfall intensity is the time for surface water run-off from the fur point (in time) of the catchment to readesign point. Flow time calculations account of catchment run-off coefficients slopes. Time of concentration for the catchment Time of concentration for the catchment to readesign point. Flow time calculations account of catchment run-off coefficients slopes. Time of concentration for the catchment Time of concentration for the catchment (minutes) shall be calculated from the track of the catchment (minutes) shall be no less than 10 minutes. Where te = time of entry (minutes) which is run-off time for overland travel (ground, roofs, downpipes, carriator or road channels) to the point of a drain or open channel.	Paragraph 2.1.3 Ground slope Adjust C by: 0-5% subtracting 0.05 5-10% no adjustment 10-20% adding 0.05 20% or steeper adding 0.10 Case of the steeper Adjust C by: Output Descent adding 0.05 20% or steeper adding 0.10 Case of the concentration Case of the concentration used to determine rainfall intensity is the time taken for surface water run-off from the furthest point (in time) of the catchment to reach the design point. Flow time calculations shall take account of catchment run-off coefficients and slopes. Time of concentration for the catchment t _c (minutes) shall be calculated from the formula: t _c = t _o + t _t but shall be no less than 10 minutes. Where t _e = time of entry (minutes) which is the run-off time for overland travel (i.e. via ground, roofs, downpipes, carriageways or road channels) to the point of entry to

SURFACE WATER

time (minutes) of network flow, (comprising flow in pipes and open channels), to the design point.

MENT

ne catchments due to shape, surface water ork and varying permeabilities within the ment, part of the catchment under consideration produce a higher peak flow than the whole of the ment. Although the area for the part catchment is er, this may be more than offset by the higher sitv storm associated with a shorter time of entration and storm duration. This situation will ally arise where the lower reaches of a catchment ensely developed.

2 Time of entry te

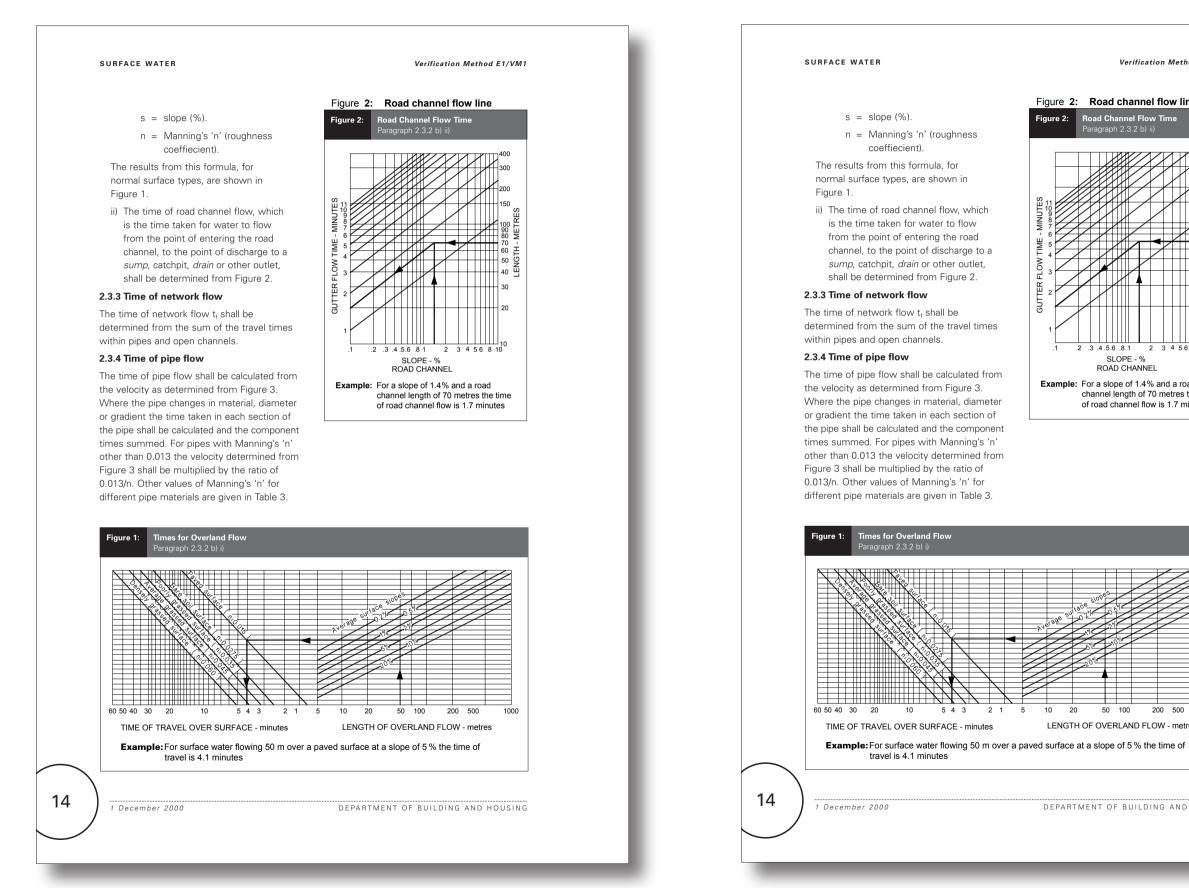
time of entry te:

Where the catchment area has a well efined and regularly repeated pattern for irecting the surface water to the drain or pen channel, the time of entry may be aken as:

- = 5 minutes for commercial or industrial areas where greater than 50% of the surface of the catchment area feeding the *drain* or open channel consists of roofed, asphalt, concrete, paved or metalled surfaces.
- = 7 minutes for residential areas where the impervious area exceeds 50% of gross area.
- = 10 minutes for low density residential areas where the impervious area is 36% to 50% of gross area.

here the catchment does not have a well efined and regularly repeated pattern or here the catchment is longer than 1.0 km, ne time of entry t_e shall be the sum of the me of overland flow and if applicable the me of road channel flow as given in i) and below.

- i) the time of overland flow shall be determined by the formula:
- $t = 100 \text{ nL}^{0.33}/\text{s}^{0.2}$

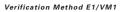

where

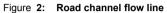
- t = time (minutes).
- L = length of overland flow (m).

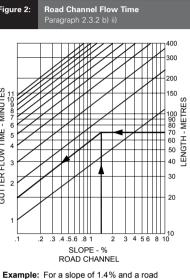
5 November 2020

Proposed E1 Surface Water - No changes proposed to this page

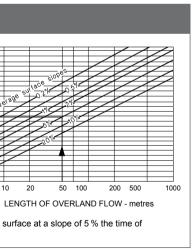
Ъ.

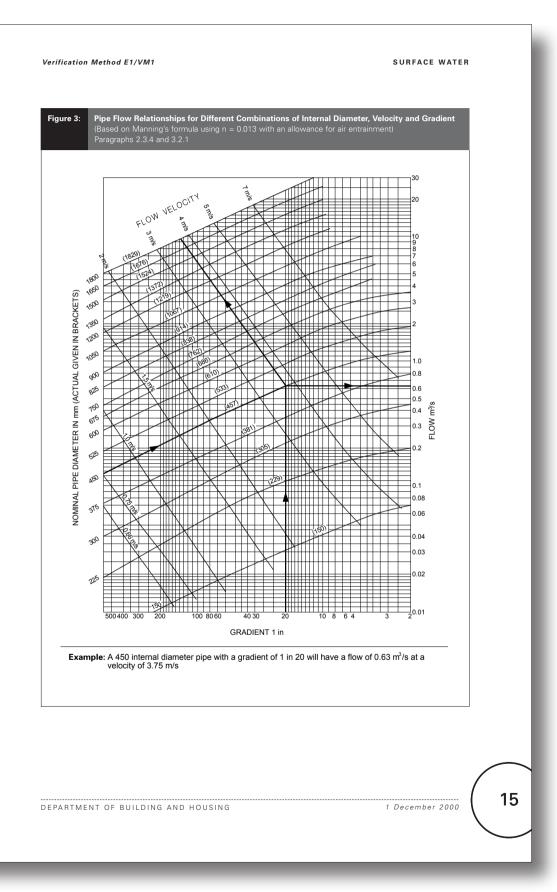

543


2 1


5

10 20


iaure 2:


channel length of 70 metres the time of road channel flow is 1.7 minutes

DEPARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

Table 3:	Mannings 'n' Paragraphs 2.3.4, 3.2.1, 4.1.6 4.1.8, 4.1.11 and 4.2.1	5,
Descriptio	on Va	lue of 'n'
Circular p HDPE and Ceramic a		0.011 0.013
Culverts Cast-in-site Corrugated		0.015 0.025
	nam niform channel in earth and ood condition	0.0225
	annel in earth and gravel bends and in fair condition	0.025
weeds on	ith rough stoney bed or with earth bank and natural streams straight banks	0.03
	atural streams with generally but with some poolsand shoal:	s 0.035
cross-sect	atural stream with irregular ion and some obstruction with and debris	0.045
	atural stream with obstruction tation and debris	0.06
obstructed	ly irregular winding stream I with significant overgrown and debris	0.1

2.3.5 Time of open channel flow

The time of flow in open channels (either watercourses or lined channels), shall be calculated by means of Manning's formula as given by Paragraph 3.0.

2.3.6 Alternative method to determine time of concentration

Where there are significant changes in gradient along the channel slope or where the open channel is in a rural area, the time of concentration t_c may be determined from:

 $t_c = 0.0195 (L^3 / H)^{0.385}$

where

16

- t_c = time of concentration (minutes).
- L = length of catchment (m) measured along the flow path.
- H = rise from bottom to top of catchment (m).

1 December 2000

Verification Method E1/VM1

2.3.7 If the actual catchment slope varies significantly from the value H/L (e.g. with a sudden steepening in the upper reaches) the average slope and height h shall be determined from the equal areas method shown in Figure 4. Height h shall be substituted for H in the formula.

3.0 Sizing of Surface Water System

3.1 Minimum size of drains

3.1.1 To avoid blockages, surface water drains shall have an internal diameter of no less than 85 mm

3.1.2 Except as allowed by Paragraph 5.0.2, the internal diameter of a drain shall not decrease in size in the direction of flow.

3.2 Hydraulic design

3.2.1 The cross-sectional area of the drain conveying surface water run-off Q_c to the outfall shall be determined by:

 $A_p = Q_c/v$

where

- $A_p = cross-sectional area of drain (m²).$
- $Q_c = surface water run-off (m^3/s).$
- v = flow velocity (m/s).

The flow velocity v shall be determined from Manning's formula:

 $v = R^{2/3} S^{1/2} n^{-1}$

where

- $R = hydraulic radius (m) = A_n/P.$
- P = wetted perimeter of the cross-section of the flow (m)
- S = slope = vertical rise/horizontal distance.
- n = Manning's 'n' (roughness coefficient). See Table 3.

Where the drain is to be constructed using a piped section. Figure 3 may be used to determine pipe size instead of the above calculation procedure. Where the pipe material has a Manning's 'n' of 0.013, Figure 3 can be used directly. For other values of Manning's 'n', the flow in the pipe Q_p shall be modified DEPARTMENT OF BUILDING AND HOUSING

Mannings 'n' Paragraphs 2.3.4, 3.2.' 4.1.8, 4.1.11 and 4.2.1		2.3.7 If signification sudden
Description	Value of 'n'	average determi
Circular pipes HDPE and uPVC Ceramic and concrete	0.011 0.013	shown substitu
Culverts Cast-in-situ concrete Corrugated metal	0.015 0.025	3.0 S
Open stream Straight uniform channel in earth a gravel in good condition	ind 0.0225	3.1 N
Unlined channel in earth and grave with some bends and in fair condit		3.1.1 To shall ha 85 mm.
Channel with rough stoney bed or w weeds on earth bank and natural st with clean straight banks		3.1.2 E> the inte
Winding natural streams with gene clean bed but with some poolsand		3.2 H
Winding natural stream with irregu cross-section and some obstruction vegetation and debris		3.2.1 Th conveyi
Irregular natural stream with obstru from vegetation and debris	uction 0.06	outfall s A _p =
Very weedy irregular winding streat obstructed with significant overgrovegetation and debris		where A _p =
	0.1	$Q_c =$
	_	V =
2.3.5 Time of open channel		The flov Mannin
The time of flow in open char vatercourses or lined channe calculated by means of Mann	ls), shall be	v = where
as given by Paragraph 3.0. 2.3.6 Alternative method to	de terre la c	R =
time of concentration		P =
Where there are significant ch gradient along the channel slo open channel is in a rural area	ppe or where the	S =
concentration t_c may be deter $_c = 0.0195 (L^3 / H)^{0.385}$		n =
vhere		Where
_c = time of concentration	(minutes).	a piped determi
 length of catchment (m) measured along the flow path. 		calculat has a N
H = rise from bottom to top	of catchment (m).	used di 'n', the
1 December 2000		DEPA

16

Verification Method E1/VM1

the actual catchment slope varies antly from the value H/L (e.g. with a n steepening in the upper reaches) the e slope and height h shall be nined from the equal areas method in Figure 4. Height h shall be uted for H in the formula.

Sizing of Surface Water System

Vinimum size of drains

o avoid blockages, surface water drains ave an internal diameter of no less than

xcept as allowed by Paragraph 5.0.2, ernal diameter of a *drain* shall not se in size in the direction of flow.

lydraulic design

he cross-sectional area of the drain ving surface water run-off Q_c to the shall be determined by:

cross-sectional area of drain (m²).

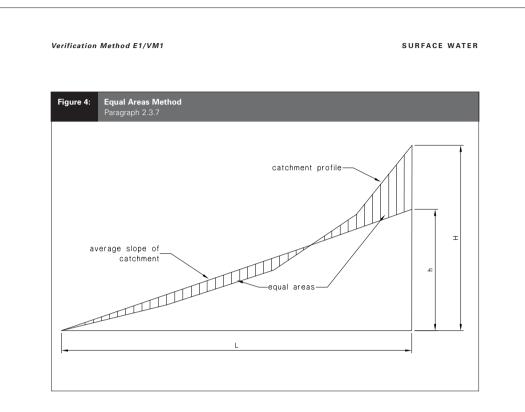
surface water run-off (m³/s)

flow velocity (m/s).

w velocity v shall be determined from ng's formula:

R^{2/3} S^{1/2} n⁻¹

hydraulic radius (m) = A_p/P .


wetted perimeter of the cross-section of the flow (m).

slope = vertical rise/horizontal distance.

Manning's 'n' (roughness coefficient). See Table 3.

the *drain* is to be constructed using I section, Figure 3 may be used to nine pipe size instead of the above tion procedure. Where the pipe material Vanning's 'n' of 0.013, Figure 3 can be irectly. For other values of Manning's e flow in the pipe Q_p shall be modified ARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

by multiplying it by the ratio of n/0.013 before entering the Figure.

3.2.2 The designer shall estimate the headwater depth H_w (height of water level above inlet invert, refer to Figure 5 (a)) for the size of *drain* (determined from Paragraph 3.2.1), and confirm that there is sufficient ground depth available at the inlet to the *drain* to contain H_w without causing flooding to the *building* site or secondary flow from the inlet. If there is insufficient depth to contain the headwater the *drain* size shall be increased until H_w is less than the ground depth available at the *drain* inlet.

3.2.3 The headwater depth H_w (m) for the *drain* shall be determined from:

a) Figure 6 for a circular piped system, or

b) Figure 7 for a box culvert system.

3.2.4 Where a *drain* gradient exceeds 1 in 10 an allowance for the bulking of the flow due to air entrainment shall be made by multiplying the area of the pipe by:

(1 + kv²/gR)

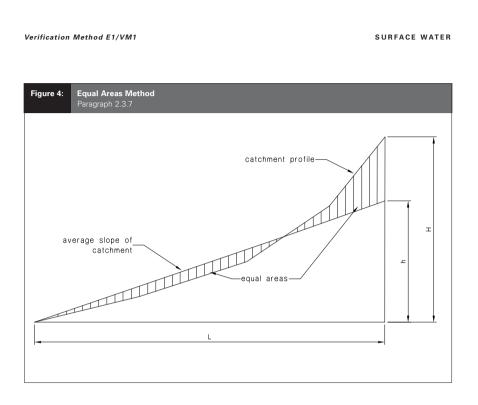
where

- k = coefficient of entrainment
 - = 0.004 for smooth concrete pipes, or
 - = 0.008 for cast-in-situ concrete culverts.
- v = flow velocity (m/s).
- R = hydraulic radius (m).
- g = acceleration due to gravity = 9.8 m/s^2 .

3.3 Pipe materials

Pipe materials shall comply with Table 1 of Acceptable Solution E1/AS1.

4.0 Secondary Flow


.....

4.0.1 Secondary flow occurs where *surface water* arrives at the site from an overflowing drainage system upstream in the catchment. Where there is a drainage system, being a pipe, culvert or open water course, upstream of the *building* site, the potential for a

DEPARTMENT OF BUILDING AND HOUSING

1 December 2000

17

by multiplying it by the ratio of n/0.013 before entering the Figure.

3.2.2 The designer shall estimate the headwater depth H_w (height of water level above inlet invert, refer to Figure 5 (a)) for the size of *drain* (determined from Paragraph 3.2.1), and confirm that there is sufficient ground depth available at the inlet to the *drain* to contain H_w without causing flooding to the *building* site or secondary flow from the inlet. If there is insufficient depth to contain the headwater the *drain* size shall be increased until H_w is less than the ground depth available at the *drain* inlet.

3.2.3 The headwater depth H_w (m) for the *drain* shall be determined from:

a) Figure 6 for a circular piped system, or

b) Figure 7 for a box culvert system.

3.2.4 Where a *drain* gradient exceeds 1 in 10 an allowance for the bulking of the flow due to air entrainment shall be made by multiplying the area of the pipe by:

DEPARTMENT OF BUILDING AND HOUSING

 $(1 + kv^2/gR)$

- where
- k = coefficient of entrainment
 - = 0.004 for smooth concrete pipes, or
 - = 0.008 for cast-in-situ concrete culverts.
- v = flow velocity (m/s).
- R = hydraulic radius (m).
- g = acceleration due to gravity = 9.8 m/s^2 .

3.3 Pipe materials

Pipe materials shall comply with Table 1 of Acceptable Solution E1/AS1.

4.0 Secondary Flow

4.0.1 Secondary flow occurs where *surface water* arrives at the site from an overflowing drainage system upstream in the catchment. Where there is a drainage system, being a pipe, culvert or open water course, upstream of the *building* site, the potential for a

1 December 2000

17

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

secondary flow path between the drainage system and the site shall be assessed. This shall involve determination of the capacity of the drainage system in conjunction with assessment of the ground levels in the general area.

COMMENT:

Secondary flow is not likely to cause flooding at the building site if the surface water run-off from the catchment above the site is less than 0.3 m³/S unless the site is in a depression capable of ponding water.

4.1 Secondary flow from a piped surface water drainage system upstream of the site

4.1.1 This method applies to the assessment of secondary flow upstream of inlet controlled and some outlet controlled, pipes and culverts (see Figure 5), provided that free flow occurs at the outlet (i.e. the outlet is not restricted by hydraulic obstructions such as control gates, a pump station or submerged outlets in a river or lake).

4.1.2 The method does not apply to outlet controlled pipes or culverts where the tailwater depth T_w (m) is less than the height D (m) of the pipe or culvert (see Figure 5 (f) i.e. outlet not flowing full), and where the estimated headwater depth H_w (m) is no greater than 0.75 D. Such situations shall be subject to specific design.

4.1.3 The headwater depth H_w shall be determined for both the inlet and outlet controlled flow conditions and the maximum value shall be used to assess secondary flow.

4.1.4 Assessment of H_w for inlet controlled pipe or culverts, see Figures 5 (a) and (b)

The headwater depth H_w for a system with inlet control shall be determined from: a) Figure 6 for a circular piped system, or b) Figure 7 for a box culvert system.

Verification Method E1/VM1

4.1.5 Assessment of H_w for outlet controlled pipes or culverts. see Figures 5 (c), (d) and (e)

The tailwater depth T_w shall be determined from Paragraphs 4.1.6 and 4.1.7, and the headwater depth H_w from Paragraph 4.1.8.

4.1.6 Tailwater depth T_w (m) shall be calculated by an iterative process from the formula:

 $Q_c = A_f S^{1/2} R^{2/3}/n$

where

- Q_c = catchment *surface water* run-off or that portion arriving at the pipe or culvert (m³/s).
- A_f = cross-sectional area of the flow immediately downstream of the pipe or culvert outlet (m²).
- S = slope of the stream (vertical fall/horizontal distance) immediately downstream of the outlet.
- R = hydraulic radius of the stream (m) = A_t/P .
- P = wetted perimeter (m) of the stream flow
- n = Manning's 'n' (roughness coefficient). See Table 3

4.1.7 Firstly a tailwater depth T_w (m) is assumed and, from knowledge of the stream cross-section the corresponding values of A P and R are determined. These values are then used in the above formula to calculate Q₂ which is compared to the actual value of Q_c known to arrive at the pipe. If the calculated value of O₂ is less than the actual value then the assumed tailwater depth shall be increased and the value of Q, recalculated. The procedure shall be repeated until such time as the tailwater depth T_w used gives two values of O₂ that agree.

If $T_w < D$ then T_w shall be this value or $(d_c + D)/2$ whichever is the greater, where:

- d_c = critical depth (m) and is determined by Figures 8 and 9.
- D = internal pipe diameter (m) for Figure 8.
- B = culvert width (m) for Figure 9.

1 December 2000

18

DEPARTMENT OF BUILDING AND HOUSING

SURFACE WATER

secondary flow path between the drainage system and the site shall be assessed. This shall involve determination of the capacity of the drainage system in conjunction with assessment of the ground levels in the general area.

COMMENT

Secondary flow is not likely to cause flooding at the building site if the surface water run-off from the catchment above the site is less than 0.3 m³/S unless the site is in a depression capable of ponding water.

4.1 Secondary flow from a piped surface water drainage system upstream of the site

4.1.1 This method applies to the assessment of secondary flow upstream of inlet controlled, and some outlet controlled, pipes and culverts (see Figure 5), provided that free flow occurs at the outlet (i.e. the outlet is not restricted by hydraulic obstructions such as control gates, a pump station or submerged outlets in a river or lake).

4.1.2 The method does not apply to outlet controlled pipes or culverts where the tailwater depth T_{w} (m) is less than the height D (m) of the pipe or culvert (see Figure 5 (f) i.e. outlet not flowing full), and where the estimated headwater depth H., (m) is no greater than 0.75 D. Such situations shall be subject to specific design.

4.1.3 The headwater depth H., shall be determined for both the inlet and outlet controlled flow conditions and the maximum value shall be used to assess secondary flow.

4.1.4 Assessment of H_w for inlet controlled **pipe or culverts,** see Figures 5 (a) and (b)

The headwater depth H_w for a system with inlet control shall be determined from:

a) Figure 6 for a circular piped system, or b) Figure 7 for a box culvert system.

4.1.7 Firstly a tailwater depth T_w (m) is assumed and, from knowledge of the stream cross-section, the corresponding values of A_f, P and B are determined. These values are then used in the above formula to calculate Q_c which is compared to the actual value of Q_c known to arrive at the pipe. If the calculated value of Q_c is less than the actual value then the assumed tailwater depth shall be increased and the value of Q_c recalculated. The procedure shall be repeated until such time as the tailwater depth T_w used gives two values of Q_c that agree. If $T_w < D$ then T_w shall be this value or $(d_c + D)/2$ whichever is the greater, where:

1 December 2000

18

DEPARTMENT OF BUILDING AND HOUSING

Ρ flow.

where

Verification Method E1/VM1

4.1.5 Assessment of H., for outlet controlled pipes or culverts, see Figures 5 (c), (d) and (e)

The tailwater depth T_w shall be determined from Paragraphs 4.1.6 and 4.1.7, and the headwater depth H_w from Paragraph 4.1.8.

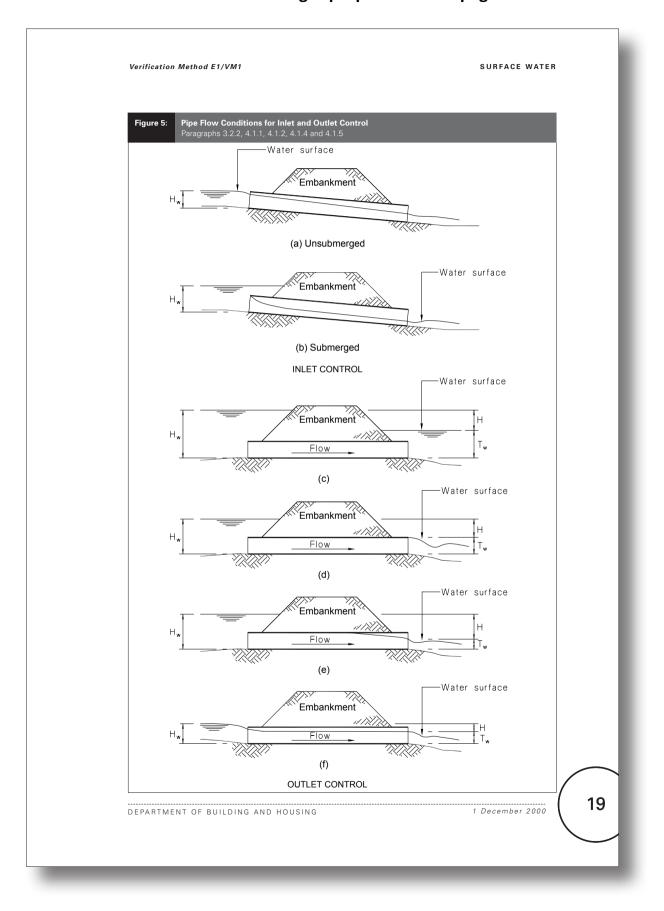
4.1.6 Tailwater depth T_w (m) shall be calculated by an iterative process from the formula: $Q_{2} = A_{4}S^{1/2}R^{2/3}/n$

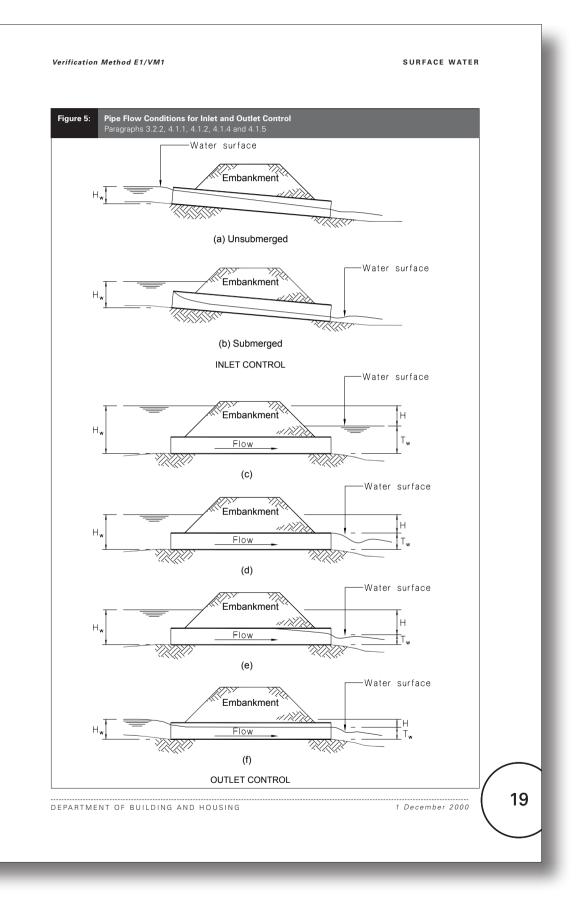
Q_c = catchment *surface water* run-off or that portion arriving at the pipe or culvert (m³/s).

 A_f = cross-sectional area of the flow immediately downstream of the pipe or culvert outlet (m²)

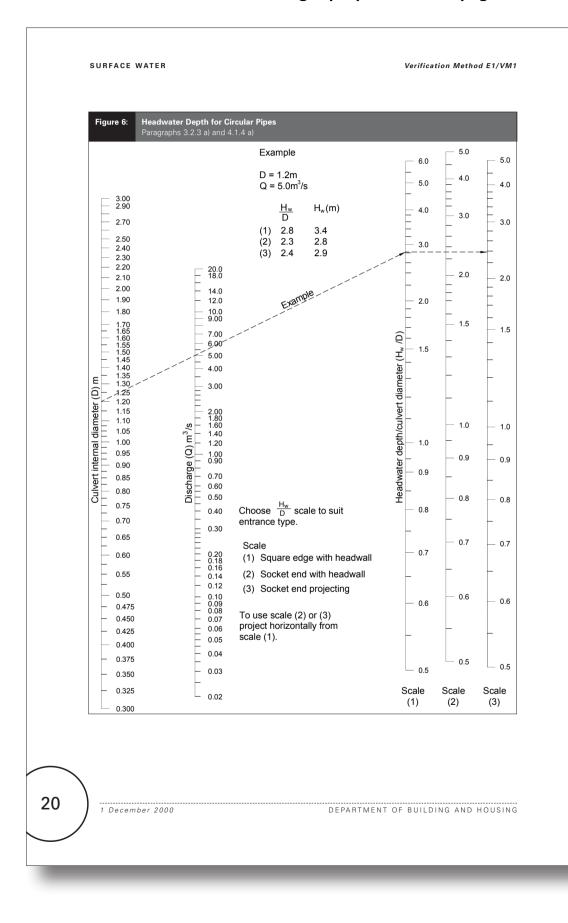
S = slope of the stream (vertical fall/horizontal distance) immediately downstream of the outlet

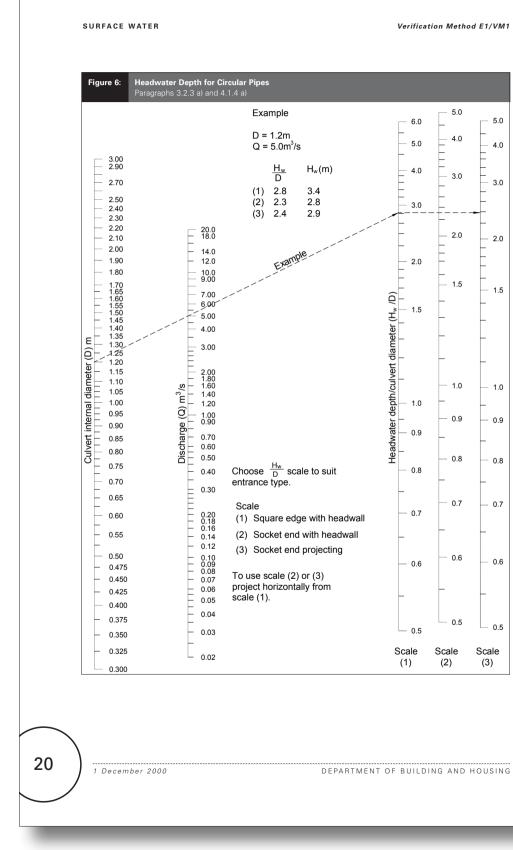
 $R = hydraulic radius of the stream (m) = A_{i}/P.$

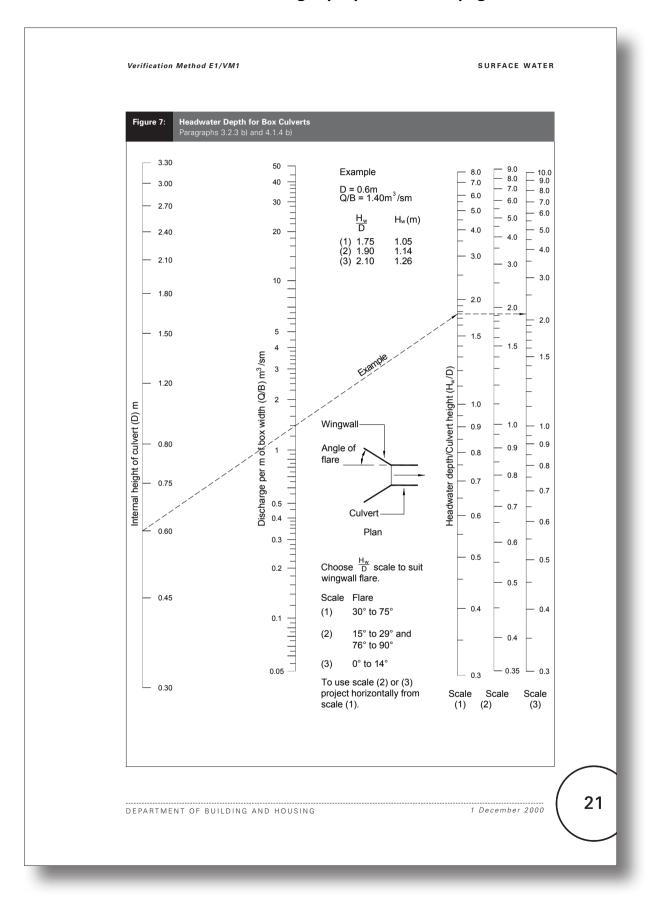

= wetted perimeter (m) of the stream

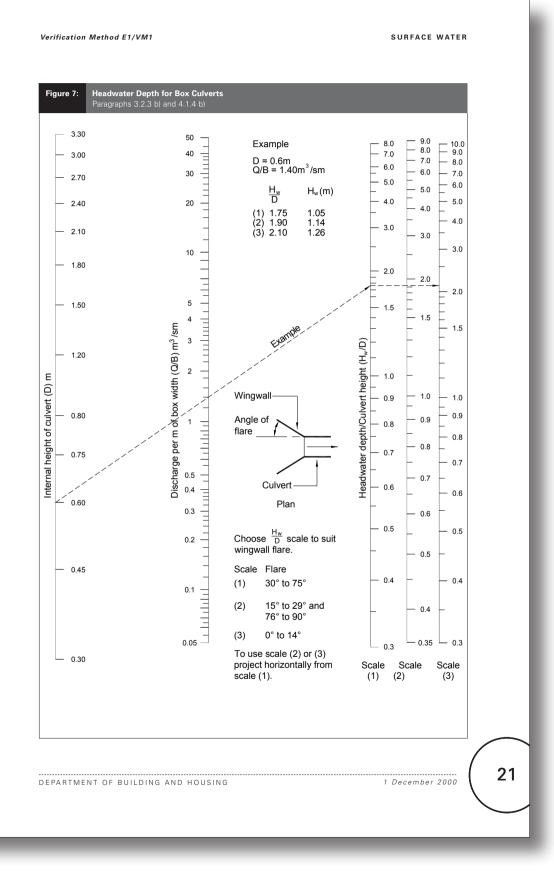

n = Manning's 'n' (roughness coefficient). See Table 3

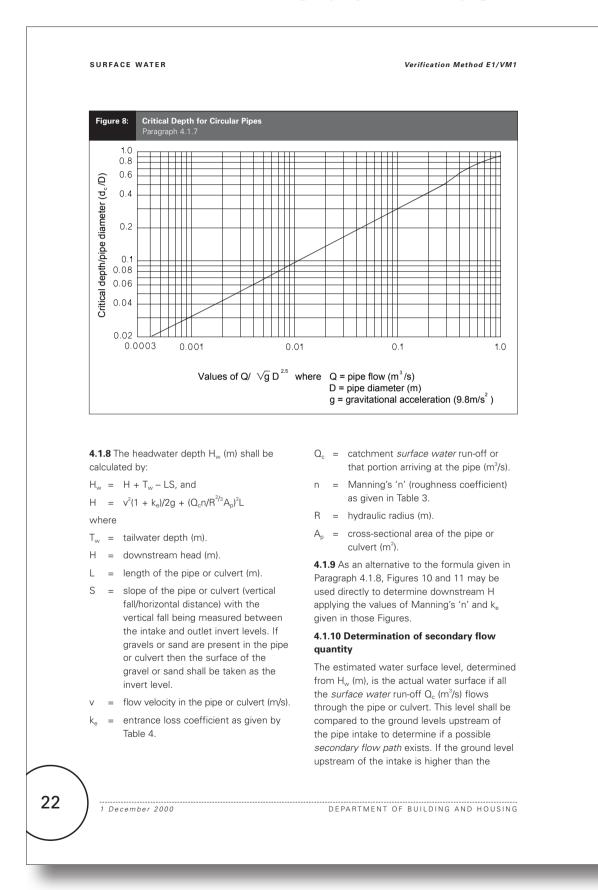
 d_c = critical depth (m) and is determined by Figures 8 and 9.

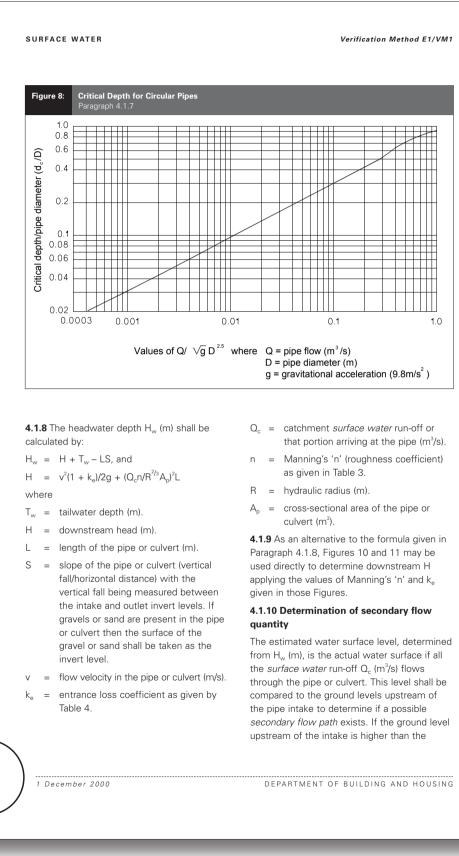

D = internal pipe diameter (m) for Figure 8.B = culvert width (m) for Figure 9.

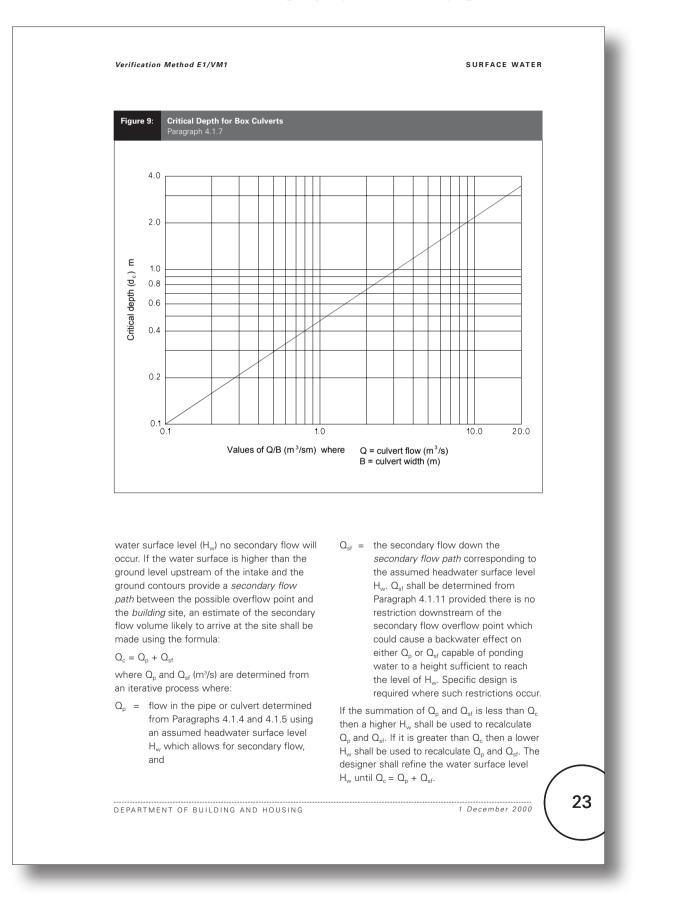

Proposed E1 Surface Water - No changes proposed to this page

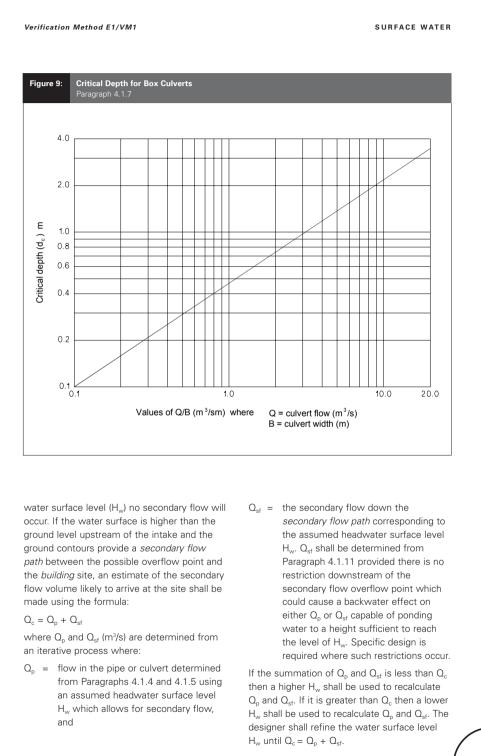



Proposed E1 Surface Water - No changes proposed to this page



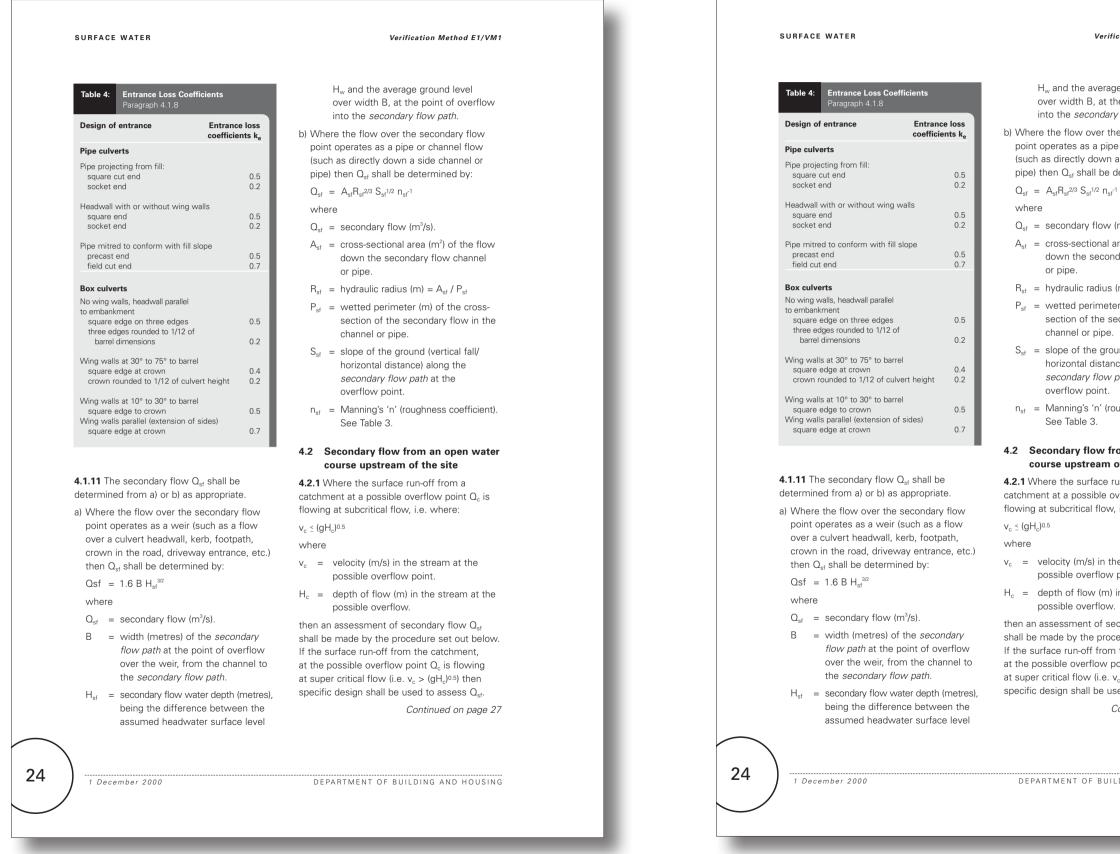



Proposed E1 Surface Water - No changes proposed to this page



22

Proposed E1 Surface Water - No changes proposed to this page



DEPARTMENT OF BUILDING AND HOUSING

1 December 2000

23

Proposed E1 Surface Water - No changes proposed to this page

Verification Method E1/VM1

H_w and the average ground level over width B, at the point of overflow into the secondary flow path.

b) Where the flow over the secondary flow point operates as a pipe or channel flow (such as directly down a side channel or pipe) then Q_{sf} shall be determined by:

 Q_{sf} = secondary flow (m³/s).

 A_{sf} = cross-sectional area (m²) of the flow down the secondary flow channel

 R_{sf} = hydraulic radius (m) = A_{sf} / P_{sf}

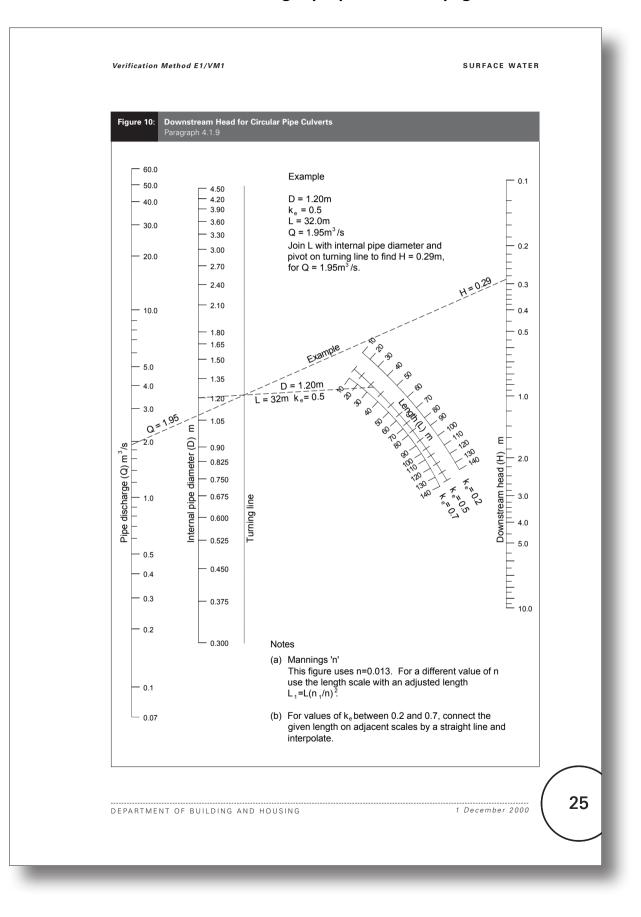
 P_{sf} = wetted perimeter (m) of the crosssection of the secondary flow in the channel or pipe.

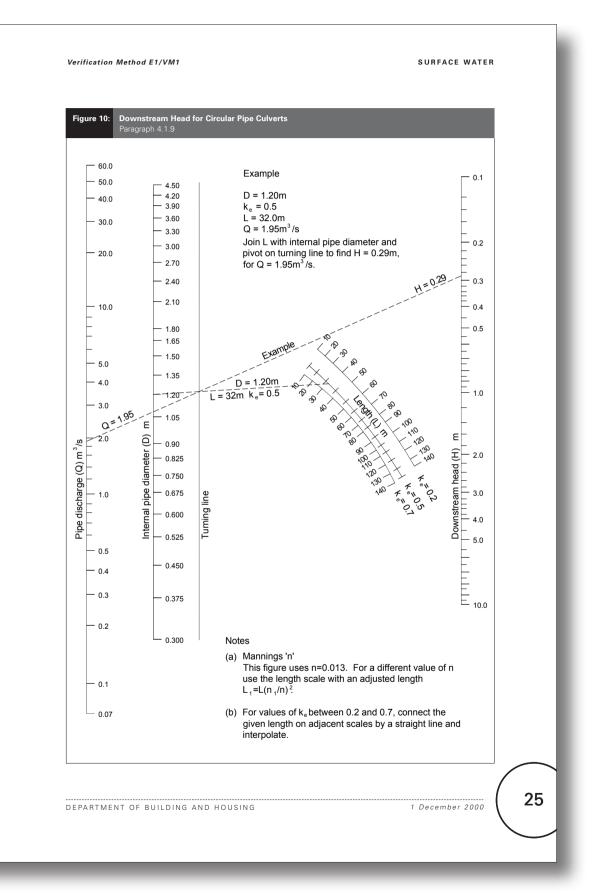
 S_{sf} = slope of the ground (vertical fall/ horizontal distance) along the secondary flow path at the overflow point.

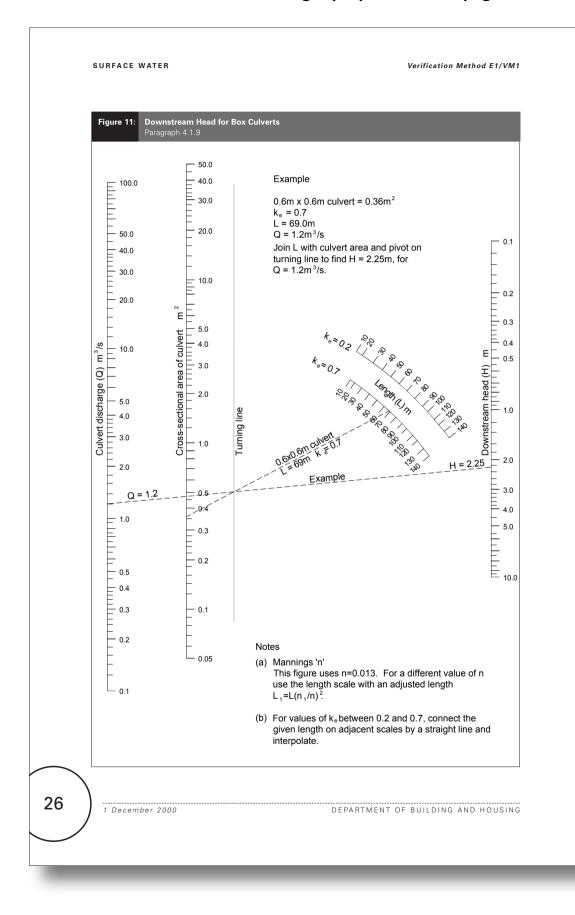
n_{sf} = Manning's 'n' (roughness coefficient). See Table 3.

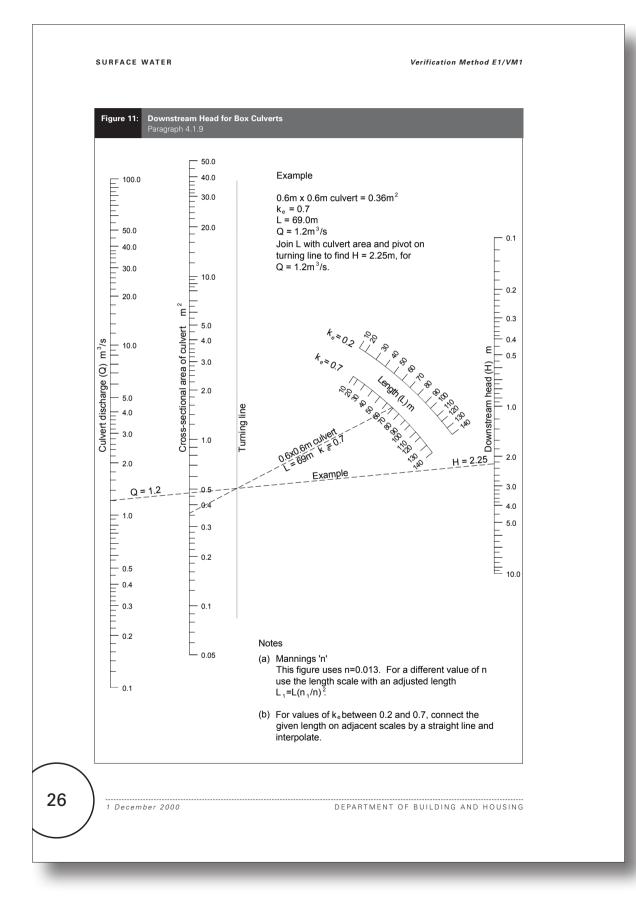
4.2 Secondary flow from an open water course upstream of the site

4.2.1 Where the surface run-off from a catchment at a possible overflow point Q_c is flowing at subcritical flow, i.e. where:


 v_c = velocity (m/s) in the stream at the possible overflow point.


 H_c = depth of flow (m) in the stream at the possible overflow.


then an assessment of secondary flow Q_{sf} shall be made by the procedure set out below. If the surface run-off from the catchment at the possible overflow point $\ensuremath{\mathsf{Q}}_{\ensuremath{\mathsf{c}}}$ is flowing at super critical flow (i.e. $v_c > (gH_c)^{0.5}$) then specific design shall be used to assess Q_{sf}.


Continued on page 27

DEPARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

Verification Method E1/VM1	SURFACE WATER	Verification Method E1/VM1
Secondary flow from an open water course upstream of the site shall be determined by an iterative process similar to that described in Paragraph 4.1.10 for pipes and culverts but using the formula: $Q_c = Q_{strm} + Q_{sf}$ where	 The level of the floor shall be set at the height of the secondary flow plus an allowance for freeboard. The freeboard shall be: 500 mm where <i>surface water</i> has a depth of 100 mm or more and extends from the <i>building</i> directly to a road or car park, other than a car park for a single dwelling. 	Secondary flow from an open water course upstream of the site shall be determined be an iterative process similar to that describe in Paragraph 4.1.10 for pipes and culverts using the formula: $Q_c = Q_{strm} + Q_{sf}$ where
Q_{c} = surface run-off from catchment	– 150 mm for all other cases.	$Q_c =$ surface run-off from catchment
upstream of possible overflow point (m³/s), Ω _{stm} = that portion of surface water run-off (m³/s) flow down the stream channel downstream of the possible overflow point, and	COMMENT: The 500 mm freeboard allows for waves generated by vehicles. Such waves will not be sustained unless there is at least 100 mm depth of water and an unobstructed path from the point where the wave is generated to the <i>building.</i>	upstream of possible overflow poin (m³/s), Q _{strm} = that portion of surface water run-o (m³/s) flow down the stream chann downstream of the possible overfl point, and
$Q_{strm} = R_{strm}^{2/3}S_{strm}^{1/2}n_{strm}^{-1}A_{strm}$	5.0 Energy Losses Through Structures	$Q_{strm} = R_{strm}^{2/3}S_{strm}^{1/2}n_{strm}^{-1}A_{strm}$
where R_{strm} and A_{strm} are determined from an assumed water surface and	5.0.1 Hydraulic design shall make allowance	where R _{strm} and A _{strm} are determined from an assumed water surface and
Rstm= hydraulic radius of stream (m) downstream of the possible overflow point. Sstm= slope of stream (vertical fall/horizontal distance) downstream of the possible overflow point.	for energy losses at <i>access chamber</i> structures where a change in direction of the flow occurs. An additional fall shall be provided through the <i>access chamber</i> to allow for these losses. This fall H_L (m) is in addition to the fall produced by the gradient of the pipe line, and shall be calculated using the formula:	 R_{strm}= hydraulic radius of stream (m) downstream of the possible overflupoint. S_{strm}= slope of stream (vertical fall/horizon distance) downstream of the possioverflow point.
n _{strm} = Manning's 'n' (roughness coefficient). See Table 3.	$H_{L} = Kv^{2}/2g$ where	n _{strm} = Manning's 'n' (roughness coefficie See Table 3.
A_{strm} = cross-sectional area of the stream (m ²), and	 K = energy loss coefficient for change in direction determined from Figure 12. 	A _{strm} = cross-sectional area of the stream (m²), and
$O_{sf} = R_{sf}^{2/3}S_{sf}^{1/2}n_{sf}^{-1}A_{sf}$	v = flow velocity (m/s).	$Q_{sf} = R_{sf}^{2/3} S_{sf}^{1/2} n_{sf}^{-1} A_{sf}$
where R_{sf} and A_{sf} are determined from the secondary flow depth being the difference between the assumed water surface and the ground level at the point of overflow into the <i>secondary flow path</i> . The designer shall refine the level of water surface until $Q_c = Q_{strm} + Q_{sf}$.	g = gravitational acceleration = 9.8 m/s ² . 5.0.2 In cases where a reduction in <i>drain</i> size is justified by a large increase in gradient, an additional head loss of 0.5 $v_e^2/2g$ shall be allowed for (v_e = exit velocity). Such reductions in size are only permissible where the exit pipe has an internal diameter	where R_{sf} and A_{sf} are determined from the secondary flow depth being the difference between the assumed water surface and t ground level at the point of overflow into t <i>secondary flow path</i> . The designer shall refine the level of water surface until $Q_c = Q_{strm} + Q_{sf}$.
4.3 Secondary flow from site to downstream drainage system	of 300 mm or greater. 6.0 Minimum Velocity	4.3 Secondary flow from site to downstream drainage system
4.3.1 The secondary flow estimated to arrive on the site shall be directed into the <i>surface</i> <i>water</i> drainage system designed for the site. The height of the secondary flow shall be used as a basis for determining the <i>building</i> floor level necessary to comply with the requirements of NZBC E1.3.2.	6.0.1 A <i>drain</i> , shall have a minimum flow velocity of 0.6 m/s when <i>sumps</i> are incorporated and 0.9 m/s when no <i>sumps</i> are used.	4.3.1 The secondary flow estimated to arri on the site shall be directed into the <i>surfac</i> <i>water</i> drainage system designed for the si The height of the secondary flow shall be used as a basis for determining the <i>buildin</i> floor level necessary to comply with the requirements of NZBC E1.3.2.

SURFACE WATER

e level of the floor shall be set at the height he secondary flow plus an allowance for aboard. The freeboard shall be:

500 mm where *surface water* has a depth of 100 mm or more and extends from the *building* directly to a road or car park, other han a car park for a single dwelling.

50 mm for all other cases.

/MENT:

500 mm freeboard allows for waves generated by cles. Such waves will not be sustained unless there least 100 mm depth of water and an unobstructed from the point where the wave is generated to the *ling.*

Energy Losses Through Structures

0.1 Hydraulic design shall make allowance energy losses at *access chamber* uctures where a change in direction of the w occurs. An additional fall shall be

vided through the *access chamber* to allow these losses. This fall H_L (m) is in addition he fall produced by the gradient of the pipe , and shall be calculated using the formula:

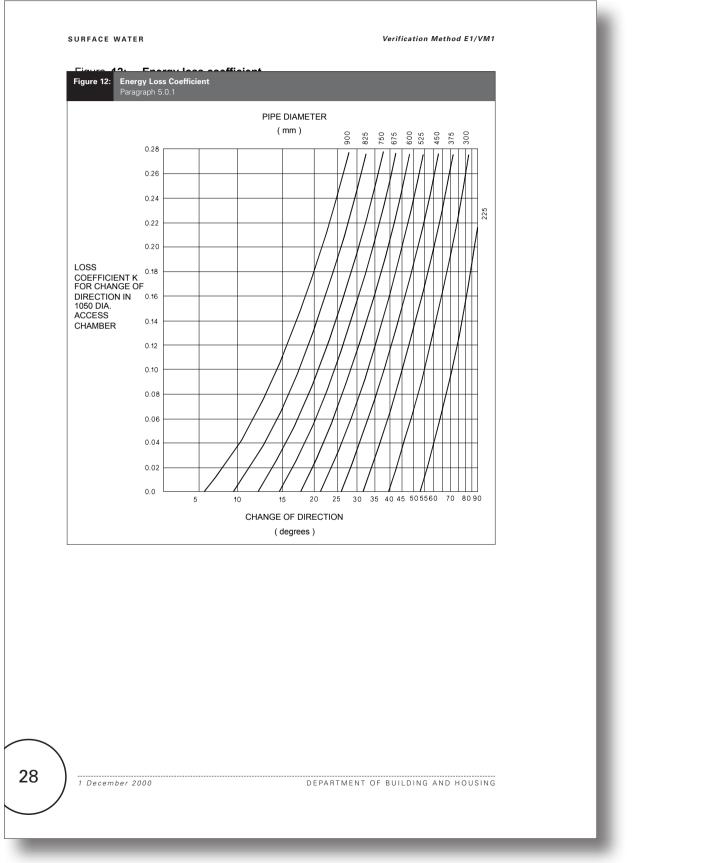
 $= Kv^2/2g$

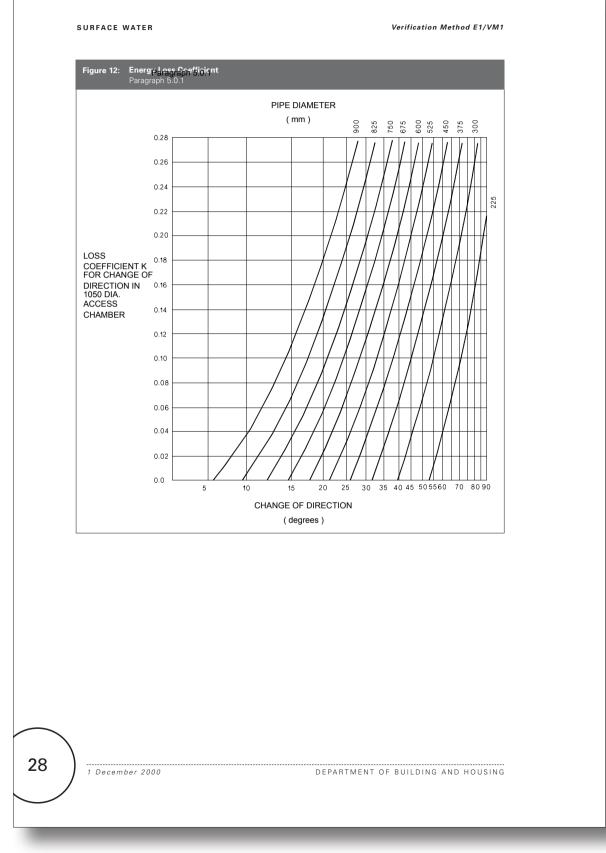
ere

 energy loss coefficient for change in direction determined from Figure 12.

= flow velocity (m/s).

= gravitational acceleration = 9.8 m/s^2 .


0.2 In cases where a reduction in *drain* e is justified by a large increase in gradient, additional head loss of $0.5 v_e^2/2g$ shall allowed for (v_e = exit velocity). Such ductions in size are only permissible here the exit pipe has an internal diameter 300 mm or greater.


Minimum Velocity

.1 A *drain*, shall have a minimum flow ocity of 0.6 m/s when *sumps* are orporated and 0.9 m/s when no *sumps* used.

1 December 2000

27

Proposed E1 Surface Water - No changes proposed to this page

Verification Method E1/VM1	SURFACE WATER	Verification Method E1/VM1
7.0 Outfall Protection	8.0 Drain Leakage Tests	7.0 Outfall Protection
 7.0.1 Unless more stringent requirements are imposed by the <i>network utility operator</i> the following shall apply to the flow discharging from the site into the <i>outfall</i>: a) The exiting velocity shall not exceed the values given in Table 5, and b) Where the <i>outfall</i> is a pipe, culvert or stream the volume discharged shall not exceed 20% of the flow in the <i>outfall</i> immediately upstream of the discharge point. COMMENT: 1. The outfall be it a pipe, culvert, stream, lake or the sea, needs to be protected from erosion or scour to meet the requirements of Clause E1.3.3 (e). If exit velocities exceed those given in Table 5 protective structures to dissipate the energy and reduce the velocities are required. These require specific design which is outside the scope of this document. Discharge to some <i>outfalls</i> will require a resource management consent. Table 5: Maximum Exit Velocities of Flow from Pipes and Culverts Discharging to Outfalls Paragraph 7.0.1 Precast concrete pipes to NZS 3107 Beaching or boulders C300 mm minimum) C40 Beaching or boulders C250 mm minimum) Stones (100-150 mm) Carse sand Stones (20, 124 	 8.0.1 The materials and workmanship used in surface water drains shall pass one of the following tests: a) Water test. b) Low pressure air test. 8.0.2 Regardless of test method the pipeline to be tested shall be sealed with suitably restrained plugs (at both ends and at all branch connections) and, where the pipe material is porous (such as ceramic or concrete), it shall be soaked for 24 hours prior to testing. COMMENT Soaking is necessary as prous pipes can absorb water or transmit air through their walls. 8.1 Water test a) Fill pipe with water, ensuring all air is expelled. b) Top up water to test head level. The minimum head shall be 1.5 m above the top of the pipe or ground water level whichever is the higher. The maximum head at the lower end of the pipeline shall not exceed 6.0 m. c) Leave for 30 minutes then measure water loss. d) The pipeline is acceptable if water loss does not exceed 2 ml per hour, per mm of internal diameter, per m of pipeline length. B.2 Low pressure air test and prove prime of 300 mm water gauge is reached. (This may be measured by a manometer such as a 'U' tube, connected to the system.) 	 7.0.1 Unless more stringent requirer imposed by the network utility operation following shall apply to the flow disc from the site into the outfall. a) The exiting velocity shall not exceevalues given in Table 5, and b) Where the outfall is a pipe, culver stream the volume discharged shexceed 20% of the flow in the outimmediately upstream of the discipation. COMMENT a. The outfall, be it a pipe, culvert, stream, it sea, needs to be protected from ensoin of meet the requirements of Clause E1.3.3 (c. If exit velocities exceed those given in Tall protective structures to dissipate the energeduce the velocities are required. These specific design which is outside the scope document. c. Discharge to some outfalls will require a management consent. Table 5: Maximum Exit Velocities of File Pipes and Culverts Discharging Paragraph 7.0.1 Outfall material Velocities in National Stores (100-160 mm) 2.3 (300 mm minimum) Beaching or boulders (100-160 mm) 2.3 (300 mm minimum) Stones (100-160 mm) 2.3 (300 mm minimum) Stones (100-160 mm) 2.3 (200 mm minimum) Stones (100-160 mm) 2.3 (200 mm minimum)
	 b) Wait until the air temperature is uniform. (Indicated by the pressure remaining steady.) 	
	c) Disconnect the air supply.	
	d) Measure pressure drop after 5 minutes.	
	e) The pipeline is acceptable if the pressure drop does not exceed 50 mm.	
DEPARTMENT OF BUILDING AND HOUSING	1 December 2000 29	DEPARTMENT OF BUILDING AND HO

SURFACE WATER

8.0 Drain Leakage Tests

8.0.1 The materials and workmanship used in *surface water drains* shall pass one of the following tests:

- a) Water test.
- b) Low pressure air test.
- c) High pressure air test.

8.0.2 Regardless of test method the pipeline to be tested shall be sealed with suitably restrained plugs (at both ends and at all branch connections) and, where the pipe material is porous (such as ceramic or concrete), it shall be soaked for 24 hours prior to testing.

COMMENT:

Soaking is necessary as porous pipes can absorb water or transmit air through their walls.

8.1 Water test

a) Fill pipe with water, ensuring all air is expelled.

b) Top up water to test head level. The minimum head shall be 1.5 m above the top of the pipe or ground water level whichever is the higher. The maximum head at the lower end of the pipeline shall not exceed 6.0 m.

c) Leave for 30 minutes then measure water loss.

 d) The pipeline is acceptable if water loss does not exceed 2 ml per hour, per mm of internal diameter, per m of pipeline length.

8.2 Low pressure air test

 a) Introduce air to the pipeline till a pressure of 300 mm water gauge is reached. (This may be measured by a manometer such as a 'U' tube, connected to the system.)

 b) Wait until the air temperature is uniform. (Indicated by the pressure remaining steady.)

- c) Disconnect the air supply.
- d) Measure pressure drop after 5 minutes.
- e) The pipeline is acceptable if the pressure drop does not exceed 50 mm.

1 December 2000

29

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

Verification Method E1/VM1

COMMENT:

1. The low pressure air test is highly susceptible to temperature fluctuations during the test period. A 1°C change during the 5 minute test period will cause a pressure change of 30 mm water gauge or 60% of the permitted change.

2. Failure to soak ceramic and concrete pipes can cause highly variable results.

8.3 High pressure air test

- a) Pressurise pipeline to 25 kPa.
- b) Wait at least 2 minutes to ensure temperature stabilisation.
- c) Disconnect air supply.
- d) Measure the time taken (minutes) for the pressure to drop to 17 kPa.
- e) The pipeline is acceptable if the time taken exceeds that given for the appropriate pipe size in Table 6.

Table	Pipe D	or Pressure Drop Versus Interna iameter aph 8.3 e)
	Internal e diameter (mm)	Time for permissable pressure drop (minutes)
	90 100 150 225	3 3 4 6

9.0 Disposal to Soak Pit

9.0.1 Where the collected *surface water* is to be discharged to a soak pit, the suitability of the natural ground to receive and dispose of the water without causing damage or nuisance to neighbouring property, shall be demonstrated to the satisfaction of the territorial authority.

COMMENT

Means of demonstrating the suitability of the ground are outside of the scope of this Verification Method. Disposal of *surface water* to a soak pit may also require a resource ment consent

1 December 2000

30

- a) Bore test holes of 100 mm to 150 mm diameter to the depth of the proposed soak pit. If groundwater is encountered in the bore test hole then this depth shall be taken as the depth of the soak pit.
- b) Fill the hole with water and maintain full for at least 4 hours, (unless the soakage is so great that the hole completely *drains* in a short time).
- c) Fill the hole with water to within 750 mm of ground level, and record the drop in water level against time, at intervals of no greater than 30 minutes, until the hole is almost empty, or over 4 hours, whichever is the shortest.
- d) Plot the drop in water level against time on a graph, and the soakage rate in mm/hr is determined from the minimum slope of the curve. If there is a marked decrease in soakage rate as the hole becomes nearly empty, the lower rates may be discarded and the value closer to the average can be adopted

9.0.3 The soak pit shall be designed utilising soakage and storage in accordance with 9.0.5 and 9.0.6 to ensure that surface water is discharged without overflowing. The rainfall intensity used in the design of the soak pit shall be that of an event having a duration of 1 hour and a 10% probability of occurring annually. Either local rainfall intensity curves produced by the territorial authority or rainfall frequency duration information produced by NIWA shall be used to determine the rainfall intensity.

COMMENT

This Verification Method does not cover the design of soak pits with overflows discharging to *outfalls*. Such soak pits are often provided to retain water until peak flows in the *outfall* have passed and it is normally considered sufficient to design them for an event having a 10 minute duration and a 10% probability of occurring annually.

9.0.4 The soak pit shall comprise either a rock filled hole (see Figure 13 (a)) or a lined chamber (see Figure 13 (b)). Both of these options shall be enclosed in filter cloth

DEPARTMENT OF BUILDING AND HOUSING

SURFACE WATER

COMMENT:

- 1. The low pressure air test is highly susceptible to temperature fluctuations during the test period. A 1°C change during the 5 minute test period will cause a pressure change of 30 mm water gauge or 60% of the permitted change
- 2. Failure to soak ceramic and concrete pipes can cause highly variable results.

8.3 High pressure air test

- a) Pressurise pipeline to 25 kPa. b) Wait at least 2 minutes to ensure
- temperature stabilisation
- c) Disconnect air supply.
- d) Measure the time taken (minutes) for the pressure to drop to 17 kPa.
- e) The pipeline is acceptable if the time taken exceeds that given for the appropriate pipe size in Table 6.

Table 6: Time Fo Pipe Dia Paragrap			rn
pipe d	ernal iameter nm)	Time for permissable pressure drop (minutes)	
1	90 00 50 25	3 3 4 6	

9.0 Disposal to Soak Pit

9.0.1 Where the collected surface water is to be discharged to a soak pit, the suitability of the natural ground to receive and dispose of the water without causing damage or nuisance to neighbouring property, shall be demonstrated to the satisfaction of the territorial authority.

COMMENT:

Means of demonstrating the suitability of the ground are outside of the scope of this Verification Method. Disposal of *surface water* to a soak pit may also require a resource management consent

30 1 December 2000

out as follows:

- short time).
- is the shortest

adopted. 9.0.3 The soak pit shall be designed utilising soakage and storage in accordance with 9.0.5 and 9.0.6 to ensure that surface water is discharged without overflowing. The rainfall intensity used in the design of the soak pit shall be that of an event having a duration of 1 hour and a 10% probability of occurring annually. Either local rainfall intensity curves produced by the territorial authority or rainfall frequency duration information produced by NIWA shall be used to determine the rainfall intensity

COMMENT:

This Verification Method does not cover the design of soak pits with overflows discharging to outfalls. Such soak pits are often provided to retain water until neak flows in the *outfall* have passed and it is normally considered sufficient to design them for an event having a 10 minute duration and a 10% probability of occurring annually.

9.0.4 The soak pit shall comprise either a rock filled hole (see Figure 13 (a)) or a lined chamber (see Figure 13 (b)). Both of these options shall be enclosed in filter cloth

DEPARTMENT OF BUILDING AND HOUSING

9.0.2 Field testing of soakage shall be carried out as follows

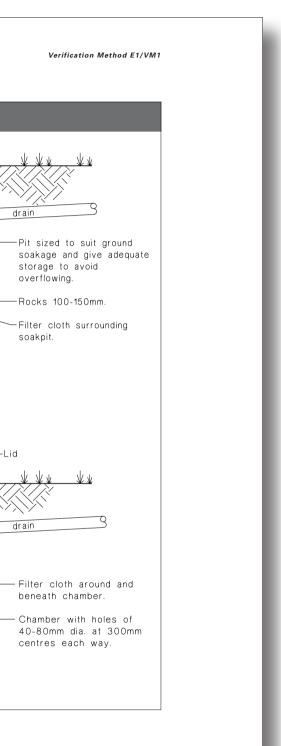
Verification Method E1/VM1

9.0.2 Field testing of soakage shall be carried

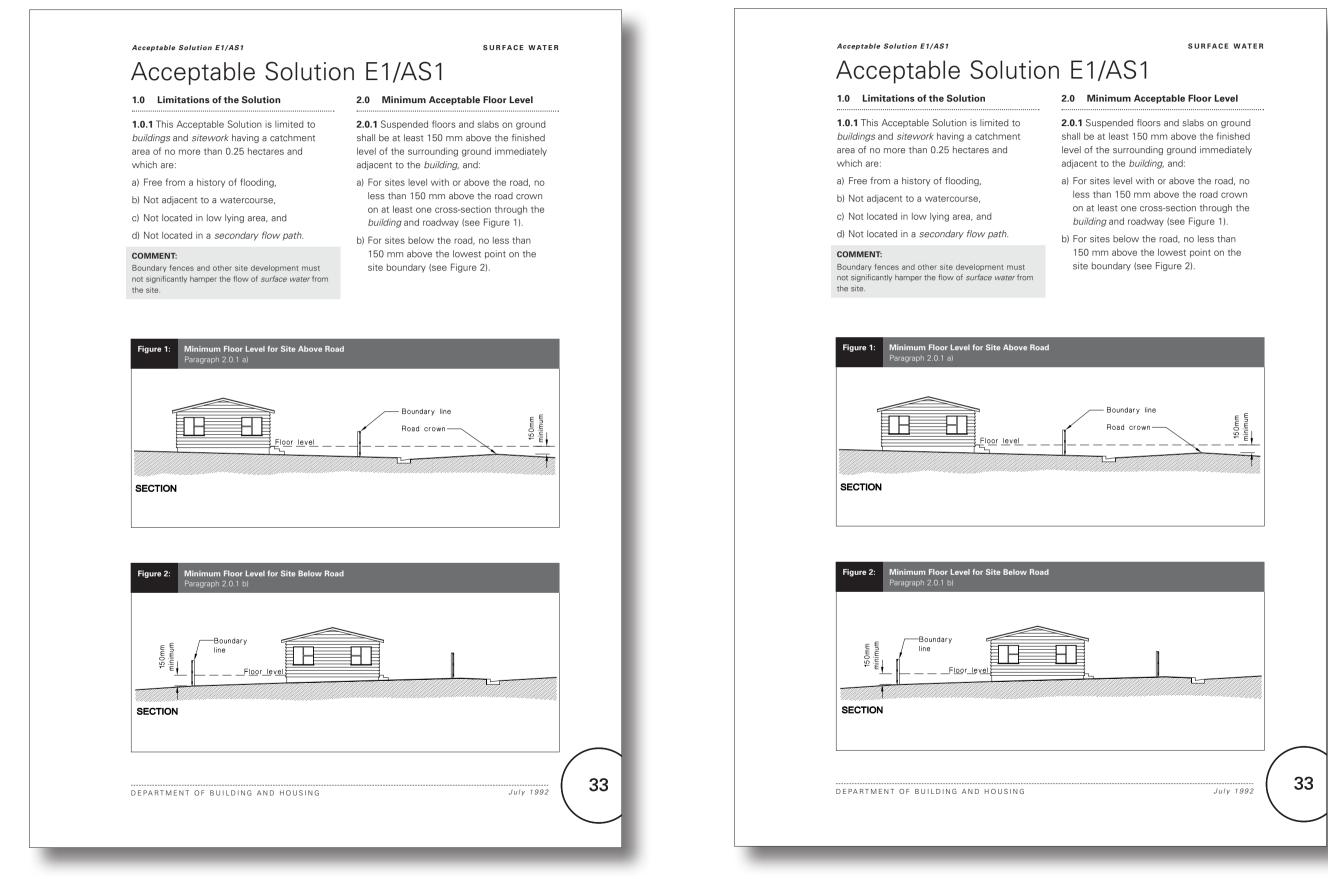
a) Bore test holes of 100 mm to 150 mm diameter to the depth of the proposed soak pit. If groundwater is encountered in the bore test hole then this depth shall be taken as the depth of the soak pit.

b) Fill the hole with water and maintain full for at least 4 hours, (unless the soakage is so great that the hole completely *drains* in a

c) Fill the hole with water to within 750 mm of ground level, and record the drop in water level against time, at intervals of no greater than 30 minutes, until the hole is almost empty, or over 4 hours, whichever


d) Plot the drop in water level against time on a graph, and the soakage rate in mm/hr is determined from the minimum slope of the curve. If there is a marked decrease in soakage rate as the hole becomes nearly empty, the lower rates may be discarded and the value closer to the average can be

06.1. The filter s per unit area of inimum thickness of orage required in the I be calculated by: ged from catchment to pur (m ³). ed of by soakage in ent (see Table 1). y (mm/hr) based on of an event having a				((((((((((((((((()))))))	complying with AS 3706.1. The filter cloth shall have a mass per unit area of 140 grams/m ² and a minimum thickness of 0.45 mm. 9.0.5 The volume of storage required in th soak pit, V_{stor} (m ³), shall be calculated by: $V_{stor} = R_c - V_{soak}$ where $R_c = run-off$ discharged from catchmen soak pit in 1 hour (m ³). $V_{soak} =$ volume disposed of by soakage in
l be calculated by: ged from catchment to bur (m ³). ed of by soakage in ent (see Table 1). y (mm/hr) based on of an event having a					soak pit, V _{stor} (m ³), shall be calculated by: V _{stor} = R _c - V _{soak} where R _c = run-off discharged from catchmen soak pit in 1 hour (m ³).
ged from catchment to bur (m ³). ed of by soakage in ent (see Table 1). y (mm/hr) based on n of an event having a				F	where R _c = run-off discharged from catchmen soak pit in 1 hour (m ³).
our (m ³). ed of by soakage in ent (see Table 1). y (mm/hr) based on o of an event having a				ł	R _c = run-off discharged from catchmen soak pit in 1 hour (m ³).
our (m ³). ed of by soakage in ent (see Table 1). y (mm/hr) based on o of an event having a				N	soak pit in 1 hour (m ³).
ent (see Table 1). γ (mm/hr) based on α of an event having a					/soak= volume disposed of by soakage ir
y (mm/hr) based on a of an event having a					1 hour (m³).
y (mm/hr) based on a of an event having a				ć	and
y (mm/hr) based on a of an event having a				F	$R_c = 10CIA$
y (mm/hr) based on a of an event having a				١	where
of an event having a				(C = run-off coefficient (see Table 1).
y of occurring				Amend 5 Jul 2001	 rainfall intensity (mm/hr) based or 1 hour duration of an event having 10% probability of occurring annually.
of the catchment the soak pit.				,	A = area (hectares) of the catchment discharging to the soak pit.
				á	and
				١	$V_{\text{soak}} = A_{\text{sp}}S_{\text{r}}/1000$
				N	where
e of the soak pit (m²).				4	A_{sp} = area of the base of the soak pit (n
nm/hr) determined from					S_r = soakage rate (mm/hr) determined 9.0.2.
sults show a soakage rate ur, soakage rather than schanism to remove the rate is significantly less than pecome the dominant factor. will require a design utilising sesary to ensure the water flows from the pit.					COMMENT: Generally where the test results show a soakage ra of greater than 500 mm/hour, soakage rather than storage will be the main mechanism to remove the water. Where the soakage rate is significantly less 500 mm/hour, storage will become the dominant f ntermediate soakage rates will require a design uf ooth in the proportions necessary to ensure the w will dissipate before it overflows from the pit.
bit comprises a rock 13 (a)) then the volume culated as V_{stor} divided				f Amend 10	9.0.6 Where the soak pit comprises a rocl filled hole (see Figure 13 (a)) then the volu of the hole shall be calculated as V_{stor} divide by 0.38.
rate is s become will rec essary flows fr bit cor 13 (a))	significantly less than the dominant factor. puire a design utilising to ensure the water om the pit. mprises a rock then the volume	significantly less than the dominant factor. juire a design utilising to ensure the water om the pit. nprises a rock then the volume d as V _{stor} divided	significantly less than a the dominant factor. juire a design utilising to ensure the water om the pit. nprises a rock then the volume d as V _{stor} divided 31	significantly less than a the dominant factor. puire a design utilising to ensure the water om the pit. mprises a rock then the volume d as V _{stor} divided 31	significantly less than the dominant factor. guire a design utilising to ensure the water om the pit. mprises a rock then the volume d as V _{stor} divided Amend 10 Jan 2017



Current E1 Surface Water - No changes proposed to this page Proposed E1 Surface Water - No changes proposed to this page SURFACE WATER SURFACE WATER Verification Method E1/VM1 Figure 13: Soak Pit for Surface Water Disposal Soak Pit for Surface Water Disposal igure 13: drain Pit sized to suit ground soakage and give adequate storage to avoid overflowing. -Rocks 100-150mm. -Filter cloth surrounding soakpit. (a) Rock soak pit (a) Rock soak pit -Lid drain Chamber sized to suit Chamber sized to suit ground soakage and give ground soakage and give adequate storage to avoid adequate storage to avoid overflowing. overflowing. Filter cloth around and Minimum 250mm layer of Minimum 250mm layer of beneath chamber. 100-150mm rocks in bottom 100-150mm rocks in bottom of chamber.of chamber. Chamber with holes of 40-80mm dia. at 300mm centres each way. (b) Chamber soak pit (b) Chamber soak pit 32 32 1 December 2000 DEPARTMENT OF BUILDING AND HOUSING 1 December 2000

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

DEPARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

3.0 Drainage System Materials and Construction

3.1 Materials

3.1.1 Pipe materials shall comply with the standards given in Table 1.

	Table 1:	Acceptable Pipe Materials Paragraphs 3.1.1 and 3.9.2
Amend 7 Sep 2010	Concrete	AS/NZS 4058
Amends 8 and 11	Vitrified cla Steel Ductile iron PVC-U Polyethyle Polypropyl	NZS 4442 or AS 1579 AS/NZS 2280 AS/NZS 1260 or AS/NZS 1254 AS/NZS 4130 or AS/NZS 5065

3.2 Sizing of drains

3.2.1 Drains shall be of sufficient size and gradient to transport surface water from the site, and be capable of handling the rainfall calculated to fall on roof and paved areas of the site during a storm with a 10% probability of occurring annually. No drain shall have an

Amend 1 Sep 1993 | internal diameter of less than 85 mm. 3.2.2 Figure 3 provides a method for selecting the correct pipe size for a calculated modified catchment area, given as:

> Modified catchment area = 0.01 Al, where

- A = area being drained comprising plan roof area (m²) plus paved area (m²). Paved area includes paving blocks. concrete, asphalt or metalled surfaces.
- I = rainfall intensity for a storm with a 10% probability of occurring annually and a 10 minute duration (mm/hr).

The rainfall intensity (I) shall be obtained from the *territorial authority* or from the Table in Appendix A.

COMMENT:

Amend 11 Nov 2020

34

Where there are differences between the design rainfall intensities obtained from the above sources. for a particular location, the most conservative rainfall intensity should be used for design calculations.

Acceptable Solution E1/AS1

Territorial Authorities may refer to any available Regional Council rainfall data to establish design rainfall intensities for their city or district.

3.2.3 The modified catchment area method is only suitable for the combination of pipe sizes, gradients and areas indicated in Figure 3. For other combinations specific design is required.

3.3 Alignment and gradient of drains

3.3.1 Drains shall be laid on a uniform line and gradient between points of access (see Paragraph 3.7). The change in direction of a drain shall not exceed 90° at any point, and where practical should be kept to less than 45° as illustrated in Figure 4.

3.3.2 Where two *drains* intersect, the directions of flow as shown in Figure 5 shall be at an angle of 60° or less.

3.4 Minimum gradients

3.4.1 Minimum acceptable gradients for surface water drains are given in Table 2.

Table 2:	Minimum Paragraph 3		
Drain inte diameter	ernal	Minimum gradient	
85 mi 100 mi 150 mi 225 mi	m m	1 in 90 1 in 120 1 in 200 1 in 350	Amend 1 Sep 1993

3.4.2 Restricted fall to outlet

Where the *surface water sewer*, road channel or other outfall is at too high a level to allow the gradient required by Table 2, the bubble-up chamber system shown in Figures 6 and 7 may be used provided that:

- a) The ground level adjacent to any downpipe discharging to the bubble-up chamber is at least 150 mm higher than the level of the top of the chamber outlet.
- b) The connections between the *drain* and downpipes are sealed.

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Continued on page 36

5 November 2020

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

	SURFACE	WATER
	3.0 Drai Construct	nage System Materials and tion
	3.1 Mat	erials
		materials shall comply with the given in Table 1.
	Table 1:	Acceptable Pipe Materials Paragraphs 3.1.1 and 3.9.2
	Concrete	AS/NZS 4058
	And the states	AC 1711

NZS 4442 or AS 1579 Steel AS/NZS 2280 Ductile iron AS/NZS 2280 AS/NZS 1260 or AS/NZS 1254 AS/NZS 4130 or AS/NZS 5065 PVC-U Polvethylene Polypropylene AS/NZS 5065

3.2 Sizing of drains

3.2.1 *Drains* shall be of sufficient size and gradient to transport *surface water* from the site, and be capable of handling the rainfall calculated to fall on roof and paved areas of the site during a storm with a 10% probability of occurring annually. No drain shall have an

Amend 1 Sep 1993 | internal diameter of less than 85 mm.

3.2.2 Figure 3 provides a method for selecting the correct pipe size for a calculated modified catchment area, given as:

Modified catchment area = 0.01 Al, where

- A = area being drained comprising plan roof area (m^2) plus paved area (m^2) . Paved area includes paving blocks, concrete, asphalt or metalled surfaces.
- I = rainfall intensity for a storm with a 10% probability of occurring annually and a 10 minute duration (mm/hr)

The rainfall intensity (I) shall be obtained from the *territorial authority* or from the Table in Appendix A.

COMMENT:

Where there are differences between the design rainfall intensities obtained from the above sources for a particular location, the most conservative rainfall intensity should be used for design calculations.

34

Amend 11 Nov 2020

Amend 7 Sep 2010

Amends 8 and 11

5 November 2020

Acceptable Solution E1/AS1

Territorial Authorities may refer to any available Regional Council rainfall data to establish design rainfall intensities for their city or district.

mend 11 ny 2020

3.2.3 The modified catchment area method is only suitable for the combination of pipe sizes, gradients and areas indicated in Figure 3. For other combinations specific design is required.

3.3 Alignment and gradient of drains

3.3.1 Drains shall be laid on a uniform line and gradient between points of access (see Paragraph 3.7). The change in direction of a drain shall not exceed 90° at any point, and where practical should be kept to less than 45° as illustrated in Figure 4.

3.3.2 Where two drains intersect, the directions of flow as shown in Figure 5 shall be at an angle of 60° or less.

3.4 Minimum gradients

Table 2:

Drain interna

85 mm

100 mm

150 mm

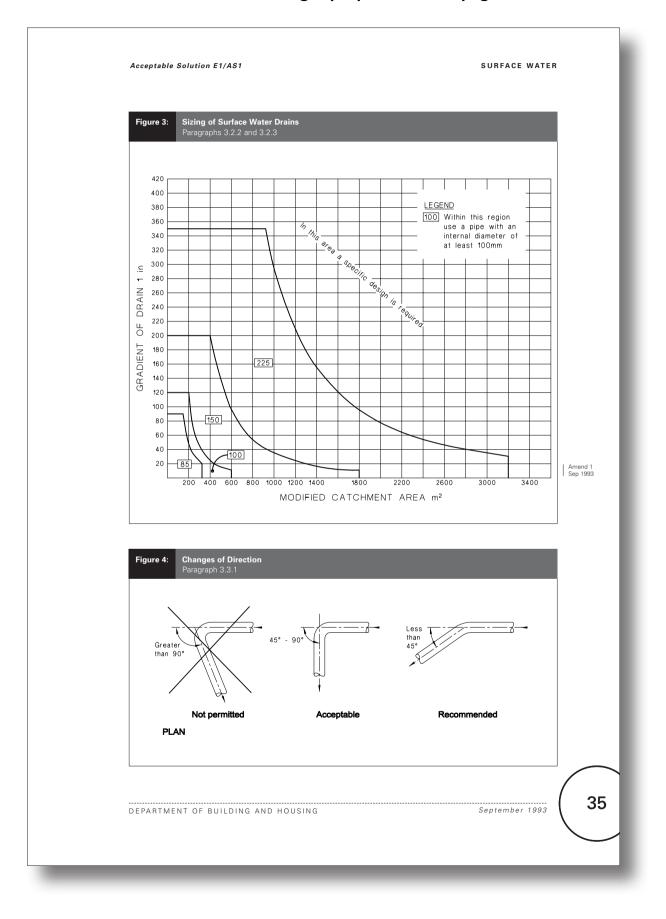
225 mm

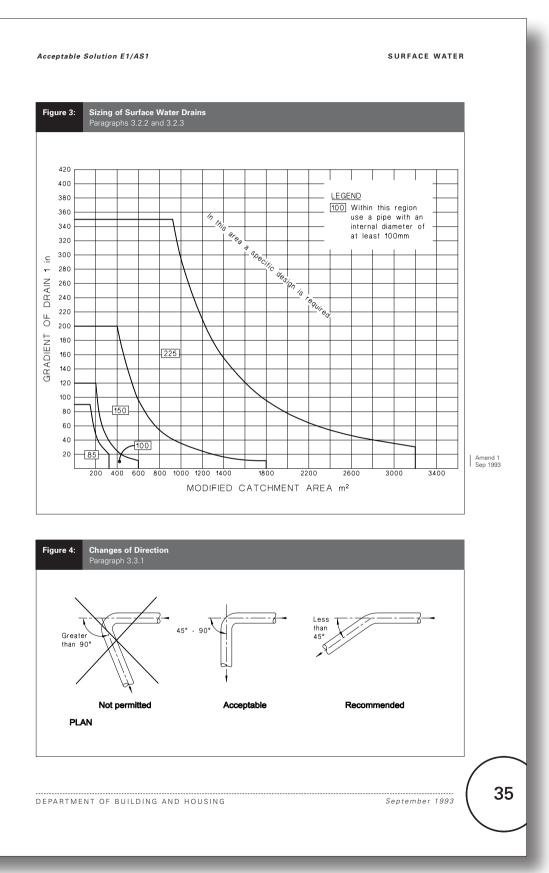
diameter

3.4.1 Minimum acceptable gradients for surface water drains are given in Table 2.

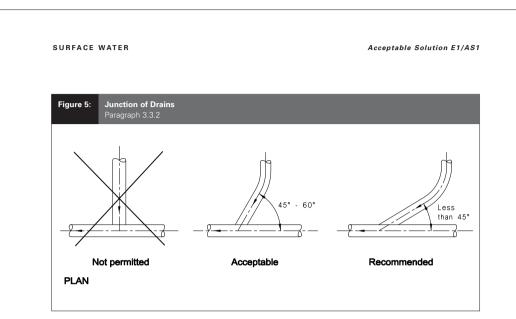
nimum Gradients agraph 3.4.1	
Minimum gradient	
1 in 90 1 in 120 1 in 200 1 in 350	Amend 1 Sep 1993

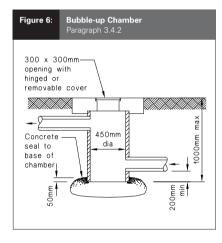
3.4.2 Restricted fall to outlet


Where the *surface water sewer*, road channel or other *outfall* is at too high a level to allow the gradient required by Table 2, the bubble-up chamber system shown in Figures 6 and 7 may be used provided that:


a) The ground level adjacent to any downpipe discharging to the bubble-up chamber is at least 150 mm higher than the level of the top of the chamber outlet.

b) The connections between the *drain* and downpipes are sealed.


Continued on page 36


MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Proposed E1 Surface Water - No changes proposed to this page

c) The total chamber depth does not exceed 1.0 m.

COMMENT:

The bubble-up chamber allows the water to be discharged through pipes laid at the allowable minimum gradients, and for the convenient collection and removal of any silts or debris which might enter the system

3.5 Jointing of drains

3.5.1 All joints in *drains* shall be watertight and prevent the infiltration of groundwater and the intrusion of tree roots.

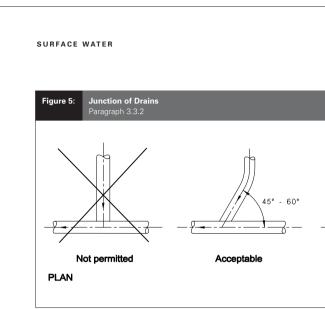
July 1992

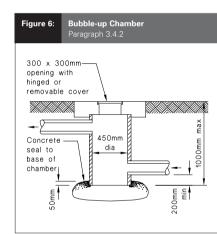
36

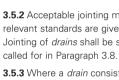
3.5.2 Acceptable jointing methods and the relevant standards are given in Table 3. Jointing of *drains* shall be subject to the tests called for in Paragraph 3.8.

3.5.3 Where a drain consists of concrete, ceramic, vitrified clay or rubber ring jointed steel or uPVC, a flexible joint shall be installed within 225 mm of the outside wall of any access chamber or inspection chamber, but outside the line of the base (see Figures 11 and 12).

COMMENT


This allows for differential settlement between the access chamber, or the inspection chamber, and the pipeline while minimizing damage to the pipeline.


3.6 Surface water inlets to drains


3.6.1 All surface water, except that collected directly from a roof, shall enter the drain via a sump which has:

- a) A grating, hinged or removable for maintenance access. The grating shall comprise at least 35% openings. The smaller dimension of any individual opening shall not exceed 35 mm,
- b) Capacity at the bottom for settlement of silt and debris, and
- c) A submerged (or trapped) outlet which prevents floatable solids entering the drain.

DEPARTMENT OF BUILDING AND HOUSING

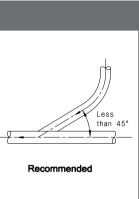
3.5.3 Where a drain consists of concrete, ceramic, vitrified clay or rubber ring jointed steel or uPVC, a flexible joint shall be installed within 225 mm of the outside wall of any access chamber or inspection chamber, but outside the line of the base (see Figures 11 and 12). COMMENT:

3.6.1 All surface water, except that collected directly from a roof, shall enter the drain via a sump which has:

c) The total chamber depth does not exceed 1.0 m.

COMMENT:

The bubble-up chamber allows the water to be discharged through pipes laid at the allowable minimum gradients, and for the convenient collection and removal of any silts or debris which might enter the system.


3.5 Jointing of drains

3.5.1 All joints in *drains* shall be watertight and prevent the infiltration of groundwater and the intrusion of tree roots.

July 1992

36

Acceptable Solution E1/AS1

3.5.2 Acceptable jointing methods and the relevant standards are given in Table 3. Jointing of drains shall be subject to the tests

This allows for differential settlement between the access chamber, or the inspection chamber, and the pipeline while minimizing damage to the pipeline

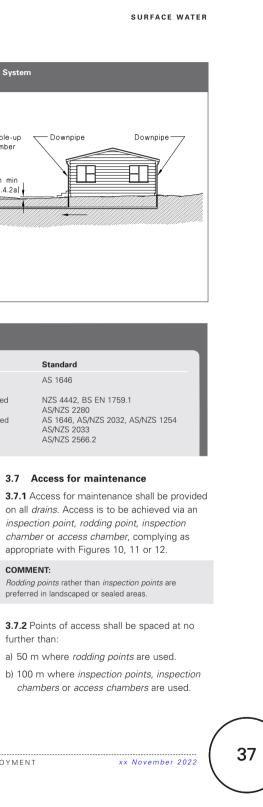
3.6 Surface water inlets to drains

a) A grating, hinged or removable for maintenance access. The grating shall

comprise at least 35% openings. The

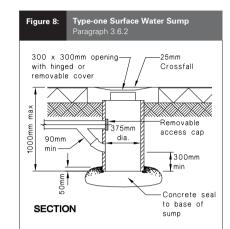
smaller dimension of any individual opening shall not exceed 35 mm,

b) Capacity at the bottom for settlement of silt and debris, and


c) A submerged (or trapped) outlet which prevents floatable solids entering the drain.

DEPARTMENT OF BUILDING AND HOUSING

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red) Acceptable Solution E1/AS1 SURFACE WATER udinal Section of Bubble-up Chamber System igure 7 Discharge to surface Bubble-u Downpipe Downpipe water sewer, road channel chamber or other outfall F Η 150mm min (see 3.4.2a) SECTION Table 3 Pine materia Jointing method Standard Concrete Elastomeric ring AS 1646 Amend 7 Sep 2010 NZS 4442, BS EN 1759.1 Elastomeric ring, welded or flanged Ductile iron Elastometric ring or flanged AS/N7S 2280 AS 1646, AS/NZS 2032, AS/NZS 1254 PVC-U Electromeric ring or solvent welded Heat welded or flanged AS/NZS 2033 Polyethylene Amend 8 Oct 2011 Polypropylene AS/NZS 2566 2 COMMENT COMMENT For compliance with this Acceptable Solution, surface Rodding points rather than inspection points are water collected directly from a roof should discharge preferred in landscaped or sealed areas. directly to a drain, and should not enter the drain via a Amend 11 Nov 2020 sump. 3.7.2 Points of access shall be spaced at no **3.6.2** Two different *sumps* are shown in further than: Figures 8 and 9. The sump shown in Figure 8 a) 50 m where rodding points are used. is suitable for an area of up to 4500/l m² and the *sump* illustrated by Figure 9 is suitable for b) 100 m where inspection points inspection an area up to 40,000/l m², where l is the chambers or access chambers are used. rainfall intensity for a storm with a 10% 3.7.3 Points of access are required at: probability of occurring annually. (See a) Changes in direction of greater than 45°, Paragraph 3.2.2.) b) Changes in gradient of greater than 45°, and 3.7 Access for maintenance c) Junctions of drains other than a drain, serving a single downpipe, that is less than 3.7.1 Access for maintenance shall be provided 2.0 m long. on all drains. Access is to be achieved via an inspection point, rodding point, inspection chamber or access chamber, complying as appropriate with Figures 10, 11 or 12. 37 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 5 November 2020


verification methods (Proposed text in blue) Acceptable Solution E1/AS1 inal Section of Bubble-up Chamber System Discharge to surface Bubble-up water sewer, road channel chamber or other outfall 150mm mir (see 3.4.2a) SECTION tina Methods Table 3 Jointing method Pipe materia Concrete Elastomeric ring Amena Sep 201 Elastomeric ring, welded or flanged Steel Elastometric ring or flanged Ductile iron PVC-U Electromeric ring or solvent welded Polyethylene Heat welded or flanged Amend 8 Oct 2011 Polypropylene COMMENT: For compliance with this Acceptable Solution, surface water collected directly from a roof should discharge directly to a drain, and should not enter the drain via a Amend 11 Nov 2020 sump. **3.6.2** Two different *sumps* are shown in Figures 8 and 9. The sump shown in Figure 8 is suitable for an area of up to 4500/l m^c and the *sump* illustrated by Figure 9 is suitable for an area up to 40,000/l m², where l is the rainfall intensity for a storm with a 10% probability of occurring annually. (See Paragraph 3.2.2.) COMMENT Example sump selection calculation for a site in Manukau, Auckland. I = 93 mm/hr (obtained from Appendix A) Maximum catchment area for a Type 1 sump in Manukau Auckland: $4500/93 = 484 \text{ m}^2$ Maximum catchment area for a Type 2 sump in Manukau, Auckland: 40,000 / 93 = 430.1 m². MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

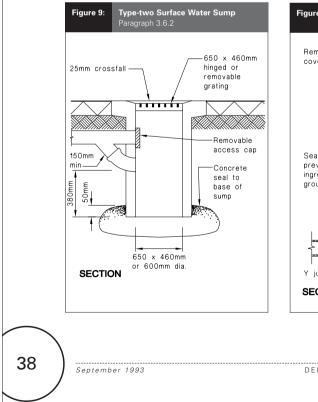
Proposed amendments to E1 Surface Water acceptable solutions and

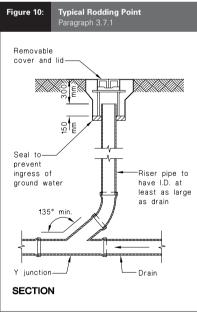
Proposed E1 Surface Water - No changes proposed to this page

Acceptable Solution E1/AS1

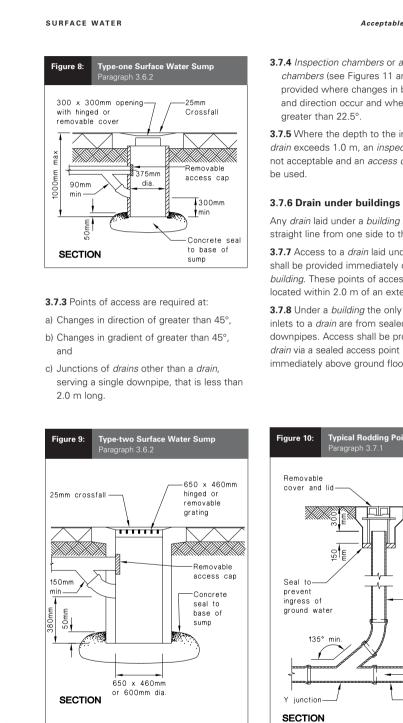
Amend 1 Sep 1993

3.7.4 Inspection chambers or access chambers (see Figures 11 and 12) shall be provided where changes in both gradient and direction occur and where either is greater than 22.5°.


3.7.5 Where the depth to the invert of the drain exceeds 1.0 m, an inspection chamber is not acceptable and an access chamber shall be used.


3.7.6 Drain under buildings

Any drain laid under a building shall be run in a straight line from one side to the other.


3.7.7 Access to a *drain* laid under a *building* shall be provided immediately outside the *building.* These points of access shall be located within 2.0 m of an exterior wall.

3.7.8 Under a *building* the only acceptable inlets to a drain are from sealed roof-water downpipes. Access shall be provided to the drain via a sealed access point in the downpipe immediately above ground floor level.

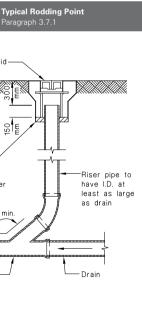
DEPARTMENT OF BUILDING AND HOUSING

38

September 1993

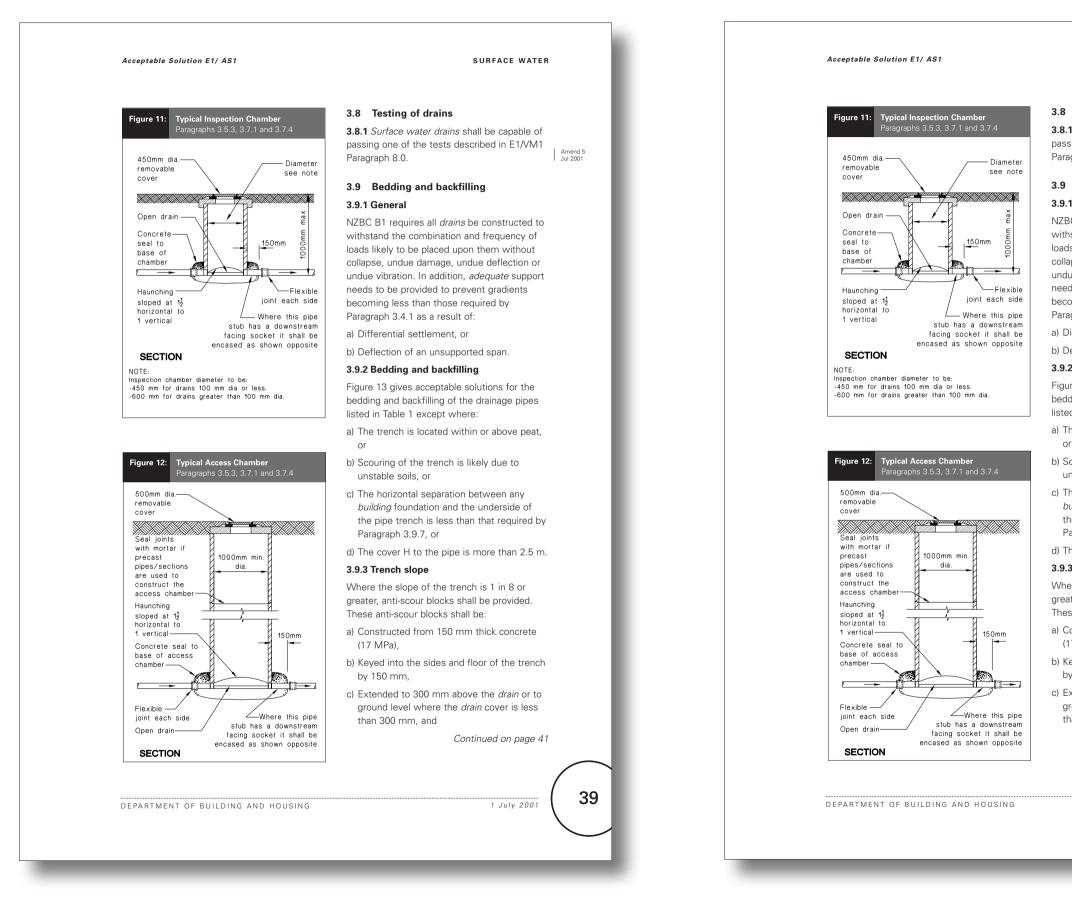
Acceptable Solution E1/AS1

3.7.4 *Inspection chambers or access* chambers (see Figures 11 and 12) shall be provided where changes in both gradient and direction occur and where either is


Amend 1 Sep 1993

3.7.5 Where the depth to the invert of the drain exceeds 1.0 m. an inspection chamber is not acceptable and an access chamber shall

Any *drain* laid under a *building* shall be run in a straight line from one side to the other.


3.7.7 Access to a *drain* laid under a *building* shall be provided immediately outside the *building*. These points of access shall be located within 2.0 m of an exterior wall.

3.7.8 Under a *building* the only acceptable inlets to a drain are from sealed roof-water downpipes. Access shall be provided to the drain via a sealed access point in the downpipe immediately above ground floor level.

DEPARTMENT OF BUILDING AND HOUSING

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

3.8 Testing of drains

3.8.1 *Surface water drains* shall be capable of passing one of the tests described in E1/VM1 Paragraph 8.0.

Amend 5

3.9 Bedding and backfilling 3.9.1 General

NZBC B1 requires all *drains* be constructed to withstand the combination and frequency of loads likely to be placed upon them without collapse, undue damage, undue deflection or undue vibration. In addition, *adequate* support needs to be provided to prevent gradients becoming less than those required by Paragraph 3.4.1 as a result of: a) Differential settlement, or

b) Deflection of an unsupported span.

3.9.2 Bedding and backfilling

Figure 13 gives acceptable solutions for the bedding and backfilling of the drainage pipes listed in Table 1 except where:

a) The trench is located within or above peat,

b) Scouring of the trench is likely due to unstable soils, or

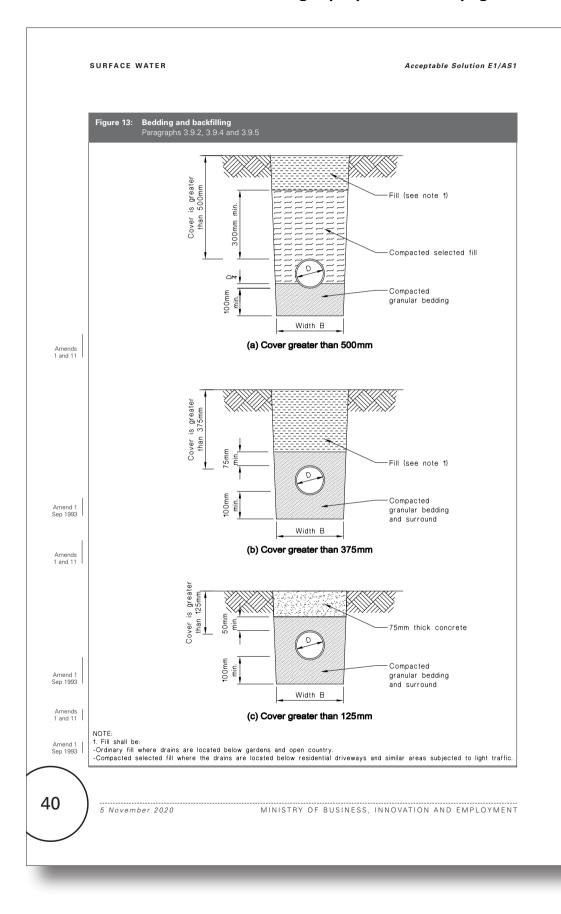
c) The horizontal separation between any *building* foundation and the underside of the pipe trench is less than that required by Paragraph 3.9.7, or

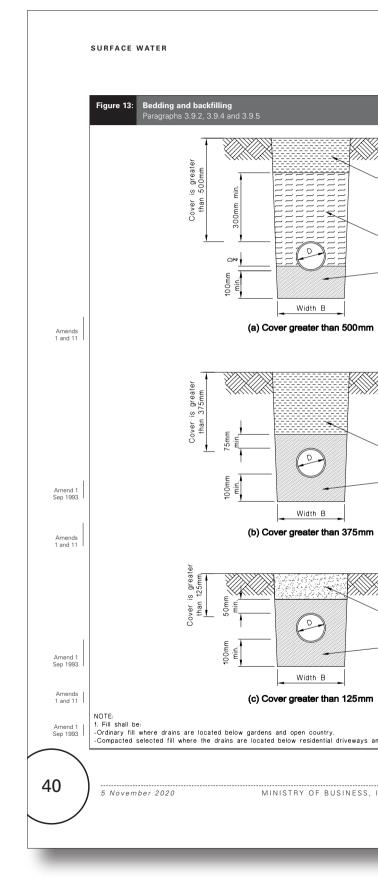
d) The cover H to the pipe is more than 2.5 m.

3.9.3 Trench slope

Where the slope of the trench is 1 in 8 or greater, anti-scour blocks shall be provided. These anti-scour blocks shall be:

a) Constructed from 150 mm thick concrete (17 MPa),


b) Keyed into the sides and floor of the trench by 150 mm,


c) Extended to 300 mm above the *drain* or to ground level where the *drain* cover is less than 300 mm, and

Continued on page 41

1 July 2001

39

Acceptable Solution E1/AS1	
- Fill (see note 1)	
Compacted selected fill	
Compacted granular bedding	
-Fill (see note 1)	
75mm thick concrete	
Compacted	
granular bedding and surround	
and similar areas subjected to light traffic.	
INNOVATION AND EMPLOYMENT	

Proposed E1 Surface Water - No changes proposed to this page

Acceptable	Solution	E1/AS1

d) Spaced at:

- i) 7.5 m centres for trench slopes between 1 in 8 and 1 in 5, or
- ii) 5.0 m centres for trench slopes greater than 1 in 5.

COMMENT

The anti-scour blocks partition off the trench and prevent ground or *surface water* running along the trench and causing scouring.

3.9.4 Trench width

The width B of the trench shall be no less than the pipe diameter D plus 200 mm. Trench width at the top of the pipe shall be no more than 600 mm unless the pipe(s) in the trench are covered with concrete, as shown in Figure 13 (c).

3.9.5 Acceptable materials

Acceptable fill materials shown in Figure 13

- a) Bedding material of clean granular non-cohesive material with a maximum particle size of 20 mm, or
- b) Selected compacted fill of any fine-grained soil or granular material which is free from topsoil and rubbish and has a maximum particle size of 20 mm, or
- c) Ordinary fill which may comprise any fill or excavated material

3.9.6 Placing and compacting

- a) Granular bedding and selected fill shall be placed in layers of no greater than 100 mm loose thickness and compacted.
- b) Up to 300 mm above the pipe, compaction shall be by tamping by hand using a rod with a pad foot (having an area of 75 \pm $25 \text{ mm by } 75 \pm 25 \text{ mm}$) over the entire surface of each layer to produce a compact layer without obvious voids.
- c) More than 300 mm above the pipe, compaction shall be by at least four passes of a mechanical tamping foot compactor (whacker type) with a minimum weight of 75 kg.

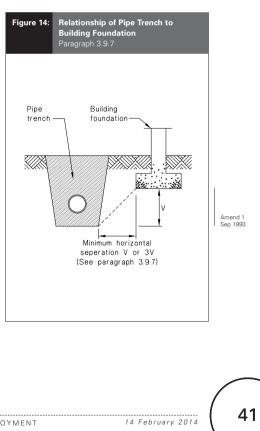
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

SURFACE WATER

Amend 9 Feb 2014

Amend 7 Sep 2010

3.9.7 Proximity of trench to building


For light timber frame and concrete masonry buildings constructed to NZS 3604 or NZS 4229 in accordance with B1/AS1_pipe trenches which are open for no longer than 48 hours shall be located no closer than distance 'V' (see Figure 14) to the underside of any *building* foundation. Where the trench is to remain open for periods longer than 48 hours, the minimum horizontal separation shall increase to 3V in all ground except rock.

3.9.8 AS/NZS 2032, AS/NZS 2566.1 and AS/NZS 2566.2 provide other acceptable

COMMENT:

solutions

These provisions may exceed New Zealand Building Code minimum requirements

Acceptable Solution E1/AS1

d) Spaced at:

- i) 7.5 m centres for trench slopes between 1 in 8 and 1 in 5 or ii) 5.0 m centres for trench slopes greater
- than 1 in 5

COMMENT

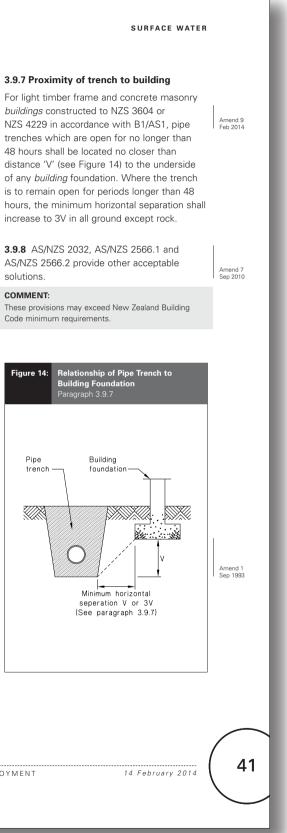
The anti-scour blocks partition off the trench and prevent ground or *surface water* running along the trench and causing scouring.

3.9.4 Trench width

The width B of the trench shall be no less. than the pipe diameter D plus 200 mm. Trench width at the top of the pipe shall be no more than 600 mm unless the pipe(s) in the trench are covered with concrete, as shown in Figure 13 (c).

3.9.5 Acceptable materials

Acceptable fill materials shown in Figure 13 are


- a) Bedding material of clean granular non-cohesive material with a maximum particle size of 20 mm, or
- b) Selected compacted fill of any fine-grained soil or granular material which is free from topsoil and rubbish and has a maximum particle size of 20 mm, or
- c) Ordinary fill which may comprise any fill or excavated material.

3.9.6 Placing and compacting

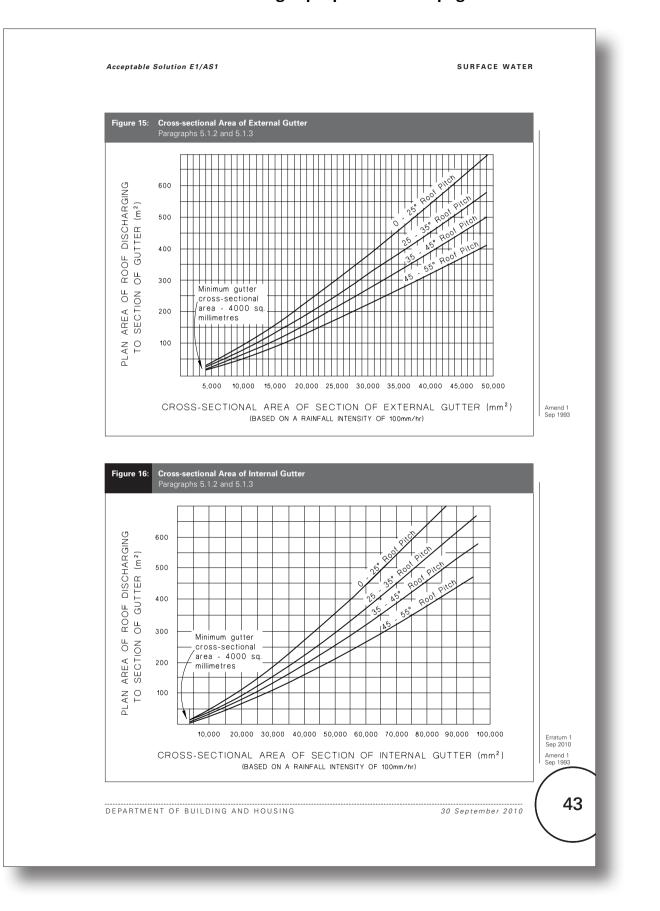
- a) Granular bedding and selected fill shall be placed in layers of no greater than 100 mm loose thickness and compacted.
- b) Up to 300 mm above the pipe, compaction shall be by tamping by hand using a rod with a pad foot (having an area of 75 \pm 25 mm by 75 \pm 25 mm) over the entire surface of each layer to produce a compact layer without obvious voids.
- c) More than 300 mm above the pipe, compaction shall be by at least four passes of a mechanical tamping foot compactor (whacker type) with a minimum weight of 75 kg

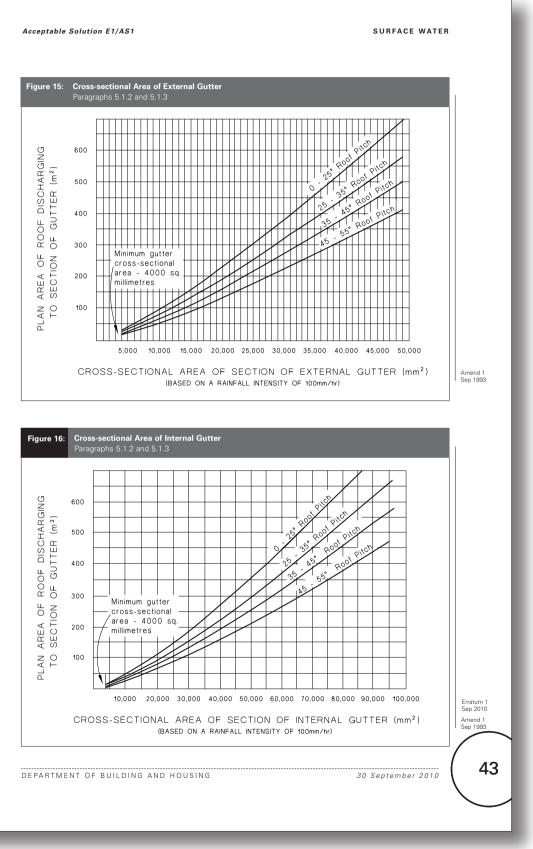
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

solutions

SURFACE WATER		Acceptable	e Solution E1/AS	,		SURFACE WATER			Acceptable Sol	lution E
4.0 Downpipes		4.3 Installation of downpi	pes			4.0 Downpipes		4.3 Installation	on of downpipes	\$
4.1 Materials		4.3.1 Where thermal movement				4.1 Materials			rmal movement of imodated by move	
4.1.1 Materials for downpipe with Table 4.	s shall comply	cannot be accommodated by r the guttering, expansion joints incorporated.				4.1.1 Materials for downp with Table 4.	ipes shall comply		pansion joints shall	
		4.3.2 All internal downpipes sh							downpipes shall w	
Table 4: Acceptable Material for Downpipes Paragraph 4.1.1	Standards	without leakage, a water test whead of 1.5 m of water, or a hing test as described in E1/VM1 Parts	gh pressure air	Amend 5 Jul 2001		Table 4: Acceptable Material for Downpipes Paragraph 4.1.1	erial Standards	head of 1.5 m of	a water test with water, or a high p in E1/VM1 Paragr	pressure
	or AS/NZS 1254	5.0 Roof Gutters			Amends 1&2		S/NZS 1260 or S/NZS 1254	5.0 Roof Gutte	ərs	
Copper BS EN 1172 Aluminium AS/NZS 1734		5.1 Size of roof gutters			Amend 8 Oct 2011		S 1397 S EN 1172 or AS 1566	5.1 Size of roo	•	
nd 7 Stainless steel NZS/BS 970 Zinc aluminium AS 1397		5.1.1 Roof gutters shall dischar that are sized as given in Parag	•	5	Amend 7 Sep 2010	Copper pipe N	ZS 3501 or AS 1432 S/NZS 1734	0	s shall discharge to given in Paragraph	
		5.1.2 Any gutter under conside			Amend 7 Sep 2010		S 1866 STM A240M		under consideratio	
4.1.2 Downpipes, gutters, roofing, fastenings and all adjoining components shall be of the same or a compatible material to eliminate the risk of galvanic corrosion.		be divided into sections and ea shall be sized. A section shall of			Amend 7 Sep 2010	Zinc aluminium sheet A	S 1528 S 1397		ections and each s section shall comp	
		length of gutter between a dow	wnpipe and			Polyethylene pipe A	S/NZS 4130	length of gutter b	oetween a downpi	pipe ar
		the adjacent high point on one that downpipe. Each section or				4.1.2 Downpipes, gutters	, roofing, fastenings	, .	n point on one side Each section of gut	,
		have a cross-sectional area of that determined from Figure 1				and all adjoining compone same or a compatible ma			tional area of no le from Figure 15 or l	
.2 Sizing of downpipes		that determined from Figure 1 (depending on whether the gu				risk of galvanic corrosion.		(depending on wh	hether the gutter i	is ex
	Downpipes sized using Table 5 are or internal), and increas acceptable accordance with Parag					4.2 Sizing of downpi	pes	or internal), and ir accordance with I	ncreased where re Paragraph 5.1.3.	equir
provided their cross-sectiona than that required by Table 5		5.1.3 Figures 15 and 16 are ba		Amend 2 Aug 1994		4.2.1 Downpipes sized us			and 16 are based of	on a
passage of a 50 mm diamete		intensity "I" of 100 mm/hr. Wh exceeds 100 mm/hr the require				acceptable. Other downp provided their cross-section		1	00 mm/hr. Where n/hr the required gr	
		shall be increased by taking the	e value read	Amend 2		than that required by Tabl	e 5, and they permit	shall be increased	d by taking the val	alue i
		from the figures and multiplyin of "I"/100. Paragraph 3.2.2 de		Aug 1994		passage of a 50 mm diam	neter sphere.	-	and multiplying it k graph 3.2.2 describ	
		determine the value of "I".		Amend 1 Sep 1993				determine the val	lue of "I".	
Table 5:Downpipe Sizes for Paragraph 4.2.1	Given Roof Pitch and Ard	ea				Table 5:Downpipe SizesParagraph 4.2.1	for Given Roof Pitch and A	rea		
Downpipe size (mm) (minimum internal sizes)	0-25°	Roof pitch 25-35° 35-45°	45-55°			Downpipe size (mm) (minimum internal sizes)	0-25°	Roof pitch 25-35°	35-45°	45-5
	Plan ar	rea of roof served by the downpipe (m²)				Plan	area of roof served by t	the downpipe (m²)	
63 mm diameter 74 mm diameter	60 85	50 40 70 60	35 50			63 mm diameter 74 mm diameter	60 85	50 70	40 60	35 50
100 mm diameter 150 mm diameter	155 350	130 110 290 250	90 200	Amend 2 Aug 1994	Amend 1 Sep 1993	100 mm diameter 150 mm diameter	155 350	130 290	110 250	90 200
65 x 50 rectangular 100 x 50 rectangular	60 100	50 40 80 70	35 60			65 x 50 rectangular 100 x 50 rectangular	60 100	50 80	40 70	35 60
75 x 75 rectangular 100 x 75 rectangular	110 150	90 80 120 105	65 90			75 x 75 rectangular 100 x 75 rectangular	110 150	90 120	80 105	65 90
\										

ons and


Amend 5 Jul 2001


Amend 2 Aug 1994

Amend 2 Aug 1994

Amend 1 Sep 1993

Amend 2 Aug 1994

Amend 7 Sep 2010

Amend 9 Feb 2014

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red)

 5.2.1 Roof gutter materials shall comply with the standards stated in Table 6. COMMENT: Proprietary membrane systems using bitumen, rubber or epoxy resins may also be acceptable. Table 6: Acceptable Material Standards for Roof Gutters Paragraph 5.2.1 PVC-U As 1273 Galvanised steel As 1273 Galvanised steel As 1397 Copper BS EN 1172 Aluminium AS 1397 Comments 5.3.1 Roof gutters shall fall to an outlet. 5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. COMMENT: The provision of expansion joints is particularly important where bot ends of a gutter are restrained against		SURFACE WATER	Acceptable Solution E1/AS
With: Numerical Standards for the standards for a compare a stated in Table 6. Numerical Standards for a state in Table 6. COMMENT: Recent of a comparable bolution E2/AS1 for the design of valley gutters. 5.5 Overflow outlets which drain to the exterior of valley gutters. Arrend 11 Toble 6: Comment and a state of the standards for preparable bolution E2/AS1 for the design of valley gutters. 5.5 Overflow outlets 5.2 Materials 5.2.1 Roof gutter materials shall comply with the standards stated in Table 6. 5.5 Overflow outlets which drain to the exterior of repoxy resins may also be acceptable. 5.5 Overflow outlets which drain to the exterior of the outlet shall be state and for downpipes (determined by Paragraph 4.2.1) serving the gutter. Toble 6: Acceptable Material Standards for Roof Gutters Paragraph 5.2.1 Proc.U As 1307 Copper Also fisseness stele XSSN25 3700 An internal gutter overflow outlet should be located to give an early, conspicuous wareing to the building. Arment 7 S.3 Gradients S.3.1 Roof gutters shall fall to an outlet. S.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a S0°C change in temperature. Mitough specific overflow provision is not necessary it is nevertheless important to ensure any overflowing were ensurement, and on PVC-U gutterging when subjected to a S0°C change in temperature. Comment The provisi		of any gutter be less than 4000 mm ² .	over 50°C
Arrend 11 Refer to Acceptable Solution E2/AS1 for the design of valley gutters. Arrend 2 Market 2 Marke		 with: a) A minimum width of 300 mm, and b) Freeboard allowance of at least 30 mm greater depth than that determined from Figure 16 in situations where overtopping 	PVC-U 17.5 Zinc 5.0 Galvanised steel 2.5 Copper 4.5 Aluminium 5.8
 Amend 7 Sep 2010 Amend 7 Sep 2010		Refer to Acceptable Solution E2/AS1 for the design of	5.5 Overflow outlets
Armend 7 Sep 2010 Armend 7 Roof Gutters Paragraph 5.2.1 Armend 7 Sep 2010 PVC-U AS 1273 Galvanised steel AS 1397 Copper Armend 7 Sep 2010 Galvanised steel AS 1397 Copper Armend 7 Sep 2010 Zinc aluminium AS/NZS 1734 Stainless steel Jinc aluminium AS/NZS 1734 Stainless steel Stainless steel Jinc aluminium AS 1397 5.3 Gradients 5.3.1 Roof gutters shall fall to an outlet. 5.4 Thermal movement 5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. COMMENT: The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively		 5.2.1 Roof gutter materials shall comply with the standards stated in Table 6. COMMENT: Proprietary membrane systems using bitumen, rubber 	overflow outlets which drain to the exterior of the <i>building</i> . The top of the outlet shall be se at least 50 mm below the top of the gutter. The cross-sectional area of the outlet shall be no less than the cross-sectional area of the downpipes (determined by Paragraph 4.2.1)
Amends 2 and 11 Galvanised steel AS 1397 Copper BS EN 1172 Aluminium AS/NZS 1734 Stainless steel NZS/BS 970 Zinc aluminium AS 1397 5.3 Gradients Galvanised steel 5.3.1 Roof gutters shall fall to an outlet. COMMENT: 5.4 Thermal movement A.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. Comment: Comment: The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively Provision of expansion joints is relatively		Roof Gutters Paragraph 5.2.1	An internal gutter overflow outlet should be located to give an early, conspicuous warning to the <i>building</i>
Support COMMENT: 5.3 Gradients Although specific overflow provision is not necessary it is nevertheless important to ensure any overflowing water cannot track back inside the <i>building</i> where it could cause problems. 5.4 Thermal movement 5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. COMMENT: The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively	2 and 11	Galvanised steel AS 1397 Copper BS EN 1172 Aluminium AS/NZS 1734 Stainless steel NZS/BS 970	overflow from the gutter spills to the outside
 5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. COMMENT: The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively 	Sep 2010	5.3 Gradients	Although specific overflow provision is not necessary it is nevertheless important to ensure any overflowing water cannot track back inside the <i>building</i> where it
Amend 7 Amend 7 Rep 2010 I Amovement, and on PVC-U guttering due to its relatively		5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected	
	Amend 7 Sep 2010	The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively	
14)		5 November 2020 MINISTRY	OF BUSINESS, INNOVATION AND EMPLOYME

verification methods (Proposed text in blue) SURFACE WATER 5.1.4 In no case shall the cross-sectional area Amend 1 Sep 1993 of any gutter be less than 4000 mm². Table 7 5.1.5 Internal gutters shall be constructed with. Material a) A minimum width of 300 mm, and PVC-U Zinc b) Freeboard allowance of at least 30 mm Galvanised stee greater depth than that determined from Copper Aluminium Figure 16 in situations where overtopping Stainless steel could enter a building. COMMENT: Refer to Acceptable Solution E2/AS1 for the design of Amend 11 Nov 2020 valley gutters. 5.5 Overflow outlets 5.2 Materials 5.2.1 Roof gutter materials shall comply with the standards stated in Table 6. COMMENT: Proprietary membrane systems using bitumen, rubber or epoxy resins may also be acceptable. serving the gutter. Acceptable Material Standards for Roof Gutters COMMENT Table 6: An internal gutter overflow outlet should be located occupier that maintenance is required. PVC-U AS 1273 AS 1397 Galvanised steel Amends 2 and 11 BS EN 1172 or AS 1566 Copper Aluminium AS/NZS 1734 ASTM A240M Stainless steel of the building. Amend 7 Sep 2010 AS 1397 Zinc aluminium COMMENT Although specific overflow provision is not necessary 5.3 Gradients 5.3.1 Roof gutters shall fall to an outlet. could cause problems. 5.4 Thermal movement 5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature. COMMENT The provision of expansion joints is particularly important where both ends of a gutter are restrained against Amend 7 Sep 2010 movement, and on PVC-U guttering due to its relatively high rate of thermal expansion 44 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT xx November 2022

Proposed amendments to E1 Surface Water acceptable solutions and

ermal E	expansion of 5 m length
er 50 ⁰ 0 agraph	
	Expansion (mm)
	17.5
	5.0
el	2.5
	4.5
	5.8
	3.8

Amend 7 Sep 2010

5.5.1 All internal gutters shall be fitted with overflow outlets which drain to the exterior of the *building*. The top of the outlet shall be set at least 50 mm below the top of the gutter. The cross-sectional area of the outlet shall be no less than the cross-sectional area of the downpipes (determined by Paragraph 4.2.1)

to give an early, conspicuous warning to the building

5.5.2 External gutters do not require overflow outlets but shall be installed to ensure any overflow from the gutter spills to the outside

it is nevertheless important to ensure any overflowing water cannot track back inside the building where it

Amend 9 Feb 2014

Proposed E1 Surface Water - No changes proposed to this page

Table A: Rainfall Intensiti 10 minute durati		es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
NORTHLAND				
Taipa Bay-Mangōnui	-35	173.5	86	117
Awanui	-35.05	173.25	85	116
Kaeo	-35.1	173.78	91	123
Kaitaia	-35.11	173.26	86	117
Ahipara	-35.17	173.17	86	116
Kerikeri	-35.23	173.95	101	135
Russell	-35.27	174.12	109	147
Paihia	-35.29	174.09	110	148
Ōkaihau	-35.32	173.77	97	130
Ōhaeawai	-35.35	173.88	99	132
Moerewa	-35.38	174.02	108	144
Kawakawa	-35.38	174.07	110	147
Rawene	-35.4	173.5	85	114
Kaikohe	-35.41	173.81	94	125
Ōmāpere and Opononi	-35.51	173.4	85	114
Whangārei	-35.72	174.3	103	140
Maungatapere	-35.75	174.2	101	137
Dargaville	-35.95	173.87	82	110
Te Kōpuru	-36.03	173.92	83	112
Mangawhai Heads	-36.05	174.59	94	130
Kaiwaka	-36.1	174.39	90	123
Maungaturoto	-36.12	174.35	89	121
Ruawai	-36.13	174.03	83	112
AUCKLAND				
Leigh	-36.19	174.63	95	130
Snells Beach	-36.21	174.69	93	127
Algies Bay-Mahurangi	-36.26	174.76	92	124
Wellsford	-36.3	174.52	100	135
Parakai	-36.38	174.45	95	128
Warkworth	-36.4	174.66	99	134
Muriwai Beach	-36.52	174.69	98	129
Helensville	-36.68	174.45	95	125
North Shore	-36.81	174.79	98	129
Waiheke Island	-36.81	175.12	102	137
Auckland	-36.87	174.77	97	127
Waitākere	-36.91	174.69	97	128
Manukau	-36.97	174.82	93	121
Bombay	-37.05	174.95	97	129
Pukekohe	-37.2	174.9	97	131
11 Wajuku	-37.25	174.73	92	122
20	21.20			

Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
NORTHLAND	, i i i i i i i i i i i i i i i i i i i			
Taipa Bay-Mangōnui	-35	173.5	86	117
Awanui	-35.05	173.25	85	116
Kaeo	-35.1	173.78	91	123
Kaitaia	-35.11	173.26	86	117
Ahipara	-35.17	173.17	86	116
Kerikeri	-35.23	173.95	101	135
Russell	-35.27	174.12	109	147
Paihia	-35.29	174.09	110	148
Ōkaihau	-35.32	173.77	97	130
Ōhaeawai	-35.35	173.88	99	132
Moerewa	-35.38	174.02	108	144
Kawakawa	-35.38	174.07	110	147
Rawene	-35.4	173.5	85	114
Kaikohe	-35.41	173.81	94	125
Ōmāpere and Opononi	-35.51	173.4	85	114
Whangārei	-35.72	174.3	103	140
Maungatapere	-35.75	174.2	101	137
Dargaville	-35.95	173.87	82	110
Te Kōpuru	-36.03	173.92	83	112
Mangawhai Heads	-36.05	174.59	94	130
Kaiwaka	-36.1	174.39	90	123
Maungaturoto	-36.12	174.35	89	121
Ruawai	-36.13	174.03	83	112
AUCKLAND				
Leigh	-36.19	174.63	95	130
Snells Beach	-36.21	174.69	93	127
Algies Bay-Mahurangi	-36.26	174.76	92	124
Wellsford	-36.3	174.52	100	135
Parakai	-36.38	174.45	95	128
Warkworth	-36.4	174.66	99	134
Muriwai Beach	-36.52	174.69	98	129
Helensville	-36.68	174.45	95	125
North Shore	-36.81	174.79	98	129
Waiheke Island	-36.81	175.12	102	137
Auckland	-36.87	174.77	97	127
Waitākere	-36.91	174.69	97	128
Manukau	-36.97	174.82	93	121
Bombay	-37.05	174.95	97	129
Pukekohe	-37.2	174.9	97	131
Vaiuku	-37.25	174.73	92	122

SURFACE WATER				E1/AS1 Appe
	ities continued ation rainfall intensition	es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensi mm/hr
WAIKATO	ucgrees			,
Coromandel	-36.74	175.5	96	132
Pauanui	-37.02	175.86	97	132
Te Puru-Thornton Bay	-37.04	175.52	91	127
Thames	-37.14	175.53	88	127
Whangamatā	-37.21	175.86	97	137
Ngatea	-37.27	175.5	88	123
Kerepehi	-37.3	175.53	87	123
Meremere	-37.32	175.07	96	132
Paeroa	-37.38	175.67	88	132
Te Kauwhata	-37.4	175.15	92	125
Waihi	-37.4	175.83	107	152
Te Aroha	-37.53	175.7	94	132
Huntly	-37.56	175.16	91	125
Waitoa	-37.6	175.63	90	123
Morrinsville	-37.65	175.53	90	129
Waharoa	-37.75	175.75	89	130
Hamilton	-37.78	175.27	92	129
	-37.8	173.27	92 89	129
Raglan Matamata	-37.82	174.80	89	121
Cambridge	-37.82	175.45	91	129
Te Awamutu	-37.69	175.32	92	129
Putāruru	-38.02	175.78	85	129
Mamaku	-38.05	176.05	102	143
Otorohanga	-38.18	175.19	94	143
Tokoroa	-38.18	175.84	94 85	132
Te Kuiti	-38.23	175.17	85 96	121
	-38.38	175.74	75	107
Mangakino			95	
Piopio	-38.47	175.02 176.36		134
Reporoa	-38.5		84	121
Taupō	-38.7	176.07 175.79	73	107
Tūrangi	-38.99	175.79	71	103
BAY OF PLENTY	07.4	175.00	00	1.41
Waihi Beach	-37.4	175.93	99	141
Island View - Pios Beach	-37.46	175.99	95	136
Katikati	-37.56	175.9	93	133
Tauranga	-37.68	176.17	101	145
Maketu Ta Duka	-37.77	176.45	109	156
Te Puke	-37.78	176.33	103	148
Paengaroa	-37.82	176.42	106	152
Te Kaha	-37.82	177.67	96	136
Matatā	-37.89	176.75	116	163

Table A:Rainfall Intensiti10 minute duration		es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP inten mm/hr
WAIKATO				
Coromandel	-36.74	175.5	96	132
Pauanui	-37.02	175.86	97	137
Te Puru-Thornton Bay	-37.04	175.52	91	127
Thames	-37.14	175.53	88	124
Whangamatā	-37.21	175.86	97	137
Ngatea	-37.27	175.5	88	123
Kerepehi	-37.3	175.53	87	121
Meremere	-37.32	175.07	96	132
Paeroa	-37.38	175.67	88	125
Te Kauwhata	-37.4	175.15	92	127
Waihi	-37.4	175.83	107	152
Te Aroha	-37.53	175.7	94	135
Huntly	-37.56	175.16	91	125
Waitoa	-37.6	175.63	90	129
Morrinsville	-37.65	175.53	91	130
Waharoa	-37.75	175.75	89	129
Hamilton	-37.78	175.27	92	129
Raglan	-37.8	174.86	89	121
Matamata	-37.82	175.77	89	129
Cambridge	-37.89	175.45	91	129
Te Awamutu	-38.02	175.32	92	129
Putāruru	-38.05	175.78	85	123
Mamaku	-38.06	176.05	102	143
Otorohanga	-38.18	175.19	94	143
Tokoroa	-38.23	175.84	85	132
Te Kuiti	-38.33	175.17	96	121
		175.74		
Mangakino	-38.38		75	107
Piopio	-38.47	175.02	95	134
Reporoa	-38.5	176.36	84	121
Taupõ	-38.7	176.07	73	107
Tūrangi	-38.99	175.79	71	103
BAY OF PLENTY	07.4	175.00	00	
Waihi Beach	-37.4	175.93	99	141
Island View - Pios Beach	-37.46	175.99	95	136
Katikati	-37.56	175.9	93	133
Tauranga	-37.68	176.17	101	145
Maketu	-37.77	176.45	109	156
Te Puke	-37.78	176.33	103	148
Paengaroa	-37.82	176.42	106	152
Te Kaha	-37.82	177.67	96	136
Matatā	-37.89	176.75	116	163

Proposed E1 Surface Water - No changes proposed to this page

E1/AS1 Appendix A

Table A: Rainfall Intensities continued 10 minute duration rainfall intensities for various locations in New Zealand							
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr			
Edgecumbe	-37.97	176.83	112	160			
Whakatāne	-37.97	176.99	100	142			
Ōpōtiki	-38.01	177.28	102	146			
Te Teko	-38.03	176.8	98	139			
Tāneatua	-38.07	176.98	95	135			
Kawerau	-38.1	176.7	95	136			
Rotorua	-38.14	176.26	96	136			
Kaingaroa Forest	-38.36	176.68	91	128			
Murupara	-38.45	176.7	84	119			
GISBORNE	-30.45	170.7	04	115			
	27.0	170.00	00	110			
Ruatoria	-37.9	178.32	80	119			
Tokomaru Bay	-38.12	178.3	68	103			
Patutahi	-38.38	177.53	59	83			
Tolaga Bay	-38.37	178.3	61	93			
Manutuke	-38.41	177.55	52	74			
Te Karaka	-38.47	177.87	47	73			
Gisborne	-38.66	178.02	67	102			
MANAWATU-WHANGAN	UI						
Ōhura	-38.85	174.98	86	124			
Taumarunui	-38.88	175.26	84	123			
Ohakune	-39.41	175.41	77	111			
Raetihi	-39.42	175.27	90	130			
Waiouru	-39.47	175.67	62	91			
Taihape	-39.68	175.78	65	97			
Whanganui	-39.93	175.03	68	100			
Hunterville	-39.93	175.57	70	103			
Rātana	-40.03	175.17	66	96			
Marton	-40.08	175.38	69	101			
Halcombe	-40.13	175.48	73	107			
Bulls	-40.17	175.38	71	102			
Sanson	-40.22	175.42	70	102			
Feilding	-40.22	175.57	69	102			
Dannevirke	-40.22	176.09	77	119			
Rongotea	-40.3	175.42	67	97			
Himatangi Beach	-40.32	175.24	66	93			
Woodville	-40.32	175.87	66	99			
Palmerston North	-40.36	175.62	65	94			
Pahiatua	-40.45	175.83	61	91			
Foxton	-40.47	175.28	71	100			
Tokomaru	-40.47	175.5	68	98			
Shannon	-40.55	175.4	70	100			
Levin	-40.61	175.27	74	104			

ocation	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
Edgecumbe	-37.97	176.83	112	160
Vhakatāne	-37.97	176.99	100	142
pōtiki	-38.01	177.28	102	146
e Teko	-38.03	176.8	98	139
āneatua	-38.07	176.98	95	135
lawerau	-38.1	176.7	95	136
Rotorua	-38.14	176.26	96	136
Kaingaroa Forest	-38.36	176.68	91	128
/lurupara	-38.45	176.7	84	119
SISBORNE				
Ruatoria	-37.9	178.32	80	119
okomaru Bay	-38.12	178.3	68	103
Patutahi	-38.38	177.53	59	83
olaga Bay	-38.37	178.3	61	93
/lanutuke	-38.41	177.55	52	74
e Karaka	-38.47	177.87	47	73
Gisborne	-38.66	178.02	67	102
MANAWATU-WHANGAN	UI			
Dhura	-38.85	174.98	86	124
aumarunui	-38.88	175.26	84	123
)hakune	-39.41	175.41	77	111
laetihi	-39.42	175.27	90	130
Vaiouru	-39.47	175.67	62	91
aihape	-39.68	175.78	65	97
Vhanganui	-39.93	175.03	68	100
lunterville	-39.93	175.57	70	103
Rātana	-40.03	175.17	66	96
larton	-40.08	175.38	69	101
lalcombe	-40.13	175.48	73	107
Bulls	-40.17	175.38	71	102
Sanson	-40.22	175.42	70	102
eilding	-40.22	175.57	69	101
Dannevirke	-40.21	176.09	77	119
Rongotea	-40.3	175.42	67	97
limatangi Beach	-40.32	175.24	66	93
Voodville	-40.33	175.87	66	99
almerston North	-40.36	175.62	65	94
Pahiatua	-40.45	175.83	61	91
oxton	-40.47	175.28	71	100
okomaru	-40.47	175.5	68	98
hannon	-40.55	175.4	70	100
evin	-40.61	175.27	74	104
INISTRY OF BUSINE	SS INNOVATION	AND EMPLOYMENT		5 November

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

SURFACE WATER

	nsities continued	na far unique la cotione in	Nou Zoolood	
To minute du	ration raintail intensitie	es for various locations in	new zealario	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intens mm/hr
Te Horo	-40.63	175.19	76	107
Eketāhuna	-40.65	175.7	73	105
HAWKES BAY				
Tuai	-38.82	177.15	69	98
Frasertown	-38.97	177.4	70	103
Wairoa	-39.04	177.42	82	121
Nūhaka	-39.03	177.75	84	126
Napier	-39.5	176.89	69	105
Hastings	-39.64	176.83	62	95
Ōtāne	-39.9	176.62	69	106
Waipawa	-39.95	176.57	67	104
Waipukurau	-40	176.56	65	100
Takapau	-40.03	176.35	72	113
TARANAKI				
Waitara	-39	174.23	98	136
Urenui	-39	174.38	95	133
New Plymouth	-39.05	174.07	100	138
Egmont Village	-39.14	174.12	114	158
Inglewood	-39.15	174.2	117	163
Ōkato	-39.2	173.88	111	153
Rahotu	-39.28	173.78	99	137
Stratford	-39.35	174.27	99	138
Kaponga	-39.43	174.15	94	132
Eltham	-39.43	174.3	97	137
Ōpunake	-39.46	173.84	87	121
Manaia	-39.55	174.12	83	117
Hāwera	-39.59	174.28	84	119
Pātea	-39.75	174.47	79	112
Waverley	-39.77	174.63	80	115
TASMAN				
Tākaka	-40.85	172.8	78	108
Riwaka	-41.05	173	77	108
Motueka	-41.11	173.02	68	94
Brightwater	-41.38	173.1	80	115
Wakefield	-41.4	173.05	81	117
Murchison	-41.8	172.33	56	85
WELLINGTON				
Ōtaki	-40.75	175.13	82	114
Kapiti	-40.94	174.99	75	103
Masterton	-40.95	175.67	54	80
Carterton	-41.02	175.52	57	83
Greytown	-41.08	175.45	57	82
\				
)				

	uration rainfall intensitie	es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensi mm/hr
Te Horo	-40.63	175.19	76	107
Eketāhuna	-40.65	175.7	73	Pintensity m/hr 2% AEP intensity mm/hr 76 107 73 105 69 98 70 103 82 121 84 126 69 95 62 95 63 100 62 95 63 100 65 100 72 133 90 136 95 133 100 138 111 153 99 137 99 133 99 137 99 138 911 153 99 137 91 132 92 133 93 136 94 132 97 137 98 117 84 119 79 112 80 115 81
HAWKES BAY				
Tuai	-38.82	177.15	69	98
Frasertown	-38.97	177.4	70	103
Wairoa	-39.04	177.42	82	121
Nūhaka	-39.03	177.75	84	126
Napier	-39.5	176.89	69	105
Hastings	-39.64	176.83	62	95
Ōtāne	-39.9	176.62	69	106
Waipawa	-39.95	176.57	67	104
Waipukurau	-40	176.56	65	100
Takapau	-40.03	176.35	72	113
TARANAKI				
Waitara	-39	174.23	98	136
Urenui	-39	174.38	95	133
New Plymouth	-39.05	174.07	100	138
Egmont Village	-39.14	174.12	114	158
Inglewood	-39.15	174.2	117	163
Ōkato	-39.2	173.88	111	153
Rahotu	-39.28	173.78	99	137
Stratford	-39.35	174.27	99	138
Kaponga	-39.43	174.15	94	132
Eltham	-39.43	174.3	97	137
Ōpunake	-39.46	173.84	87	121
Manaia	-39.55	174.12	83	117
Hāwera	-39.59	174.28	84	119
Pātea	-39.75	174.47	79	112
Waverley	-39.77	174.63	80	115
TASMAN				
Tākaka	-40.85	172.8	78	108
Riwaka	-41.05	173	77	108
Motueka	-41.11	173.02	68	94
Brightwater	-41.38	173.1	80	115
Wakefield	-41.4	173.05	81	117
Murchison	-41.8	172.33	56	85
WELLINGTON				
Ōtaki	-40.75	175.13	82	114
Kapiti	-40.94	174.99	75	103
Masterton	-40.95	175.67	54	80
Carterton	-41.02	175.52	57	83
Greytown	-41.08	175.45	57	82
\mathbf{i}				

Proposed E1 Surface Water - No changes proposed to this page

E1/AS1 Appendix A

	Table A: Rainfall Intensities continued 10 minute duration rainfall intensities for various locations in New Zealand								
	Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr				
	Upper Hutt	-41.12	175.07	72	99				
	Featherston	-41.12	175.32	63	88				
	Porirua	-41.13	174.83	76	105				
	Mākara-Ohariu	-41.2	174.75	74	102				
	Lower Hutt	-41.21	174.91	72	100				
	Martinborough	-41.22	175.44	54	77				
	Wellington	-41.28	174.77	70	97				
	WEST COAST								
	Hector-Ngakawau	-41.63	171.87	84	122				
	Westport	-41.75	171.58	101	145				
	Reefton	-42.11	171.87	71	103				
	Blackball	-42.3	171.49	92	132				
	Dobson	-42.39	171.44	93	133				
	Greymouth	-42.45	171.21	95	133				
	Hokitika	-42.72	170.97	104	144				
	Ross	-42.9	170.82	110	149				
	Franz Josef/Waiau	-43.38	170.17	92	124				
	Fox Glacier	-43.42	170.05	99	133				
	NELSON								
	Nelson	-41.27	173.3	77	107				
	MARLBOROUGH	11.27	170.0						
	Havelock	-41.28	173.77	70	98				
	Picton	-41.3	174.01	59	83				
	Blenheim	-41.52	173.95	48	69				
	Seddon	-41.67	174.07	49	70				
	CANTERBURY	11.07	174.07	15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Kaikõura	-42.4	173.69	53	79				
	Hanmer Springs	-42.52	172.83	46	72				
	Culverden	-42.77	172.85	43	67				
	Cheviot	-42.77	173.26	43	70				
	Amberley	-42.01	172.72	43	65				
		-43.15	172.6	42	71				
	Rangiora Oxford								
		-43.3	172.18	60	93				
	Woodend	-43.32	172.67	42	65				
	Cust	-43.32	172.37	53	84				
	Darfield	-43.48	172.12	47	75				
	Christchurch	-43.53	172.62	39	62				
	Rolleston	-43.58	172.38	48	77				
	Lyttelton	-43.60	172.72	26	41				
	Burnham Military Camp	-43.61	172.32	47	75				
	Lincoln	-43.63	172.48	51	82				
mend 11 Nov 2020	Methven	-43.63	171.63	54	83				

Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
Upper Hutt	-41.12	175.07	72	99
Featherston	-41.12	175.32	63	88
Porirua	-41.13	174.83	76	105
Mākara-Ohariu	-41.2	174.75	74	102
Lower Hutt	-41.21	174.91	72	100
Martinborough	-41.22	175.44	54	77
Wellington	-41.28	174.77	70	97
WEST COAST				
Hector-Ngakawau	-41.63	171.87	84	122
Westport	-41.75	171.58	101	145
Reefton	-42.11	171.87	71	103
Blackball	-42.3	171.49	92	132
Dobson	-42.39	171.44	93	133
Greymouth	-42.45	171.21	95	133
Hokitika	-42.72	170.97	104	144
Ross	-42.9	170.82	110	149
Franz Josef/Waiau	-43.38	170.17	92	124
Fox Glacier	-43.42	170.05	99	133
NELSON				
Nelson	-41.27	173.3	77	107
MARLBOROUGH				
Havelock	-41.28	173.77	70	98
Picton	-41.3	174.01	59	83
Blenheim	-41.52	173.95	48	69
Seddon	-41.67	174.07	49	70
CANTERBURY	40.4	170.00	50	79
Kaikõura Hanmar Springa	-42.4 -42.52	173.69 172.83	53 46	79
Hanmer Springs Culverden	-42.52	172.85	40	67
Cheviot	-42.77	172.85	43	70
Amberley	-43.15	173.20	43	65
Rangiora	-43.13	172.6	42	71
Oxford	-43.3	172.0	60	93
Woodend	-43.32	172.18	42	65
Cust	-43.32		42 53	84
Darfield	-43.32	172.37 172.12	47	75
Christchurch	-43.48	172.12	39	62
Rolleston	-43.55	172.38	48	77
Lyttelton	-43.60	172.72	26	41
Burnham Military Camp	-43.61	172.32	47	75
	-43.63	172.48	51	82
Vethven	-43.63	172.48	54	83
			5.	

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

SURFACE WATER

	New	Zealand	

Proposed E1 Surface Water - No changes proposed to this page

SURFACE WATER

	ities continued tion rainfall intensitie	es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensit mm/hr
Dunsandel	-43.67	172.2	46	74
Таі Тари	-43.68	172.54	41	65
Aoraki/Mount Cook	-43.66	170.17	72	102
Rakaia	-43.75	172.02	48	76
Leeston	-43.77	172.3	47	75
Akaroa	-43.81	172.97	45	69
Southbridge	-43.82	172.25	46	72
Ashburton	-43.82	172.23	52	80
	-44	170.5	33	53
Lake Tekapo Geraldine	-44 -44.1	170.5	33 48	53 75
Fairlie	-44.1	170.83	55	86
Temuka	-44.23	171.27	44	71
Pleasant Point	-44.27	171.13	47	75
Twizel	-44.25	170.1	37	58
Timaru	-44.4	171.26	46	73
Pareora	-44.47	171.22	48	77
Omarama	-44.48	169.97	35	57
Otematata	-44.6	170.18	38	61
Waimate	-44.74	171.06	42	65
Kurow	-44.73	170.47	42	65
OTAGO				
Wanaka	-44.7	169.13	26	40
Arrowtown	-44.93	168.83	32	50
Oamaru	-45.09	170.98	42	65
Cromwell	-45.05	169.2	36	59
Queenstown	-45.04	168.65	34	53
Ranfurly	-45.12	170.1	52	85
Kakanui	-45.18	170.9	42	65
Clyde	-45.18	169.32	45	75
Alexandra	-45.25	169.38	44	73
Hampden	-45.33	170.82	43	67
Palmerston	-45.48	170.72	45	71
Roxburgh	-45.53	169.32	53	90
Waikouaiti	-45.6	170.68	44	69
Karitane	-45.63		44	70
		170.65		
Warrington	-45.72	170.59	43	68
Waitati	-45.75	170.57	43	69
Outram	-45.87	170.23	51	81
Dunedin	-45.89	170.5	47	73
Lawrence	-45.92	169.68	54	87
Tapanui	-45.95	169.27	54	90

Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP inter mm/hr
Dunsandel	-43.67	172.2	46	74
Таі Тари	-43.68	172.54	41	65
Aoraki/Mount Cook	-43.66	170.17	72	102
Rakaia	-43.75	172.02	48	76
Leeston	-43.77	172.3	47	75
Akaroa	-43.81	172.97	45	69
Southbridge	-43.82	172.25	46	72
Ashburton	-43.88	171.76	52	80
Lake Tekapo	-44	170.5	33	53
Geraldine	-44.1	171.23	48	75
Fairlie	-44.1	170.83	55	86
Temuka	-44.23	171.27	44	71
Pleasant Point	-44.27	171.13	47	75
Twizel	-44.25	170.1	37	58
Timaru	-44.4	171.26	46	73
Pareora	-44.47	171.22	48	77
Omarama	-44.48	169.97	35	57
Otematata	-44.6	170.18	38	61
Waimate	-44.74	171.06	42	65
Kurow	-44.74	170.47	42	65
OTAGO		170.47	72	00
Wanaka	-44.7	169.13	26	40
Arrowtown	-44.93	168.83	32	40 50
Oamaru	-44.93	170.98	42	65
Cromwell	-45.09	169.2	36	59
		168.65	34	59
Queenstown Ranfurly	-45.04 -45.12	170.1	34 52	53 85
<i>,</i>				
Kakanui	-45.18	170.9	42	65
Clyde	-45.18	169.32	45	75
Alexandra	-45.25	169.38	44	73
Hampden	-45.33	170.82	43	67
Palmerston	-45.48	170.72	45	71
Roxburgh	-45.53	169.32	53	90
Waikouaiti	-45.6	170.68	44	69
Karitane	-45.63	170.65	44	70
Warrington	-45.72	170.59	43	68
Waitati	-45.75	170.57	43	69
Outram	-45.87	170.23	51	81
Dunedin	-45.89	170.5	47	73
Lawrence	-45.92	169.68	54	87
Tapanui	-45.95	169.27	54	90

E1/AS1 Appendix A

Proposed E1 Surface Water - No changes proposed to this page

	sities continued ration rainfall intensitie	es for various locations in	New Zealand	
Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
Milton	-46.12	169.97	56	88
Clinton	-46.2	169.38	53	86
Balclutha	-46.23	169.73	55	87
Stirling	-46.25	169.78	54	85
Kaitangata	-46.28	169.85	54	85
Owaka	-46.45	169.65	49	77
OTAGO				
Te Anau	-45.42	167.72	48	75
Manapouri	-45.57	167.62	51	78
Lumsden	-45.73	168.43	52	87
Riversdale	-45.9	168.73	50	84
Ohai	-45.93	167.95	50	80
Gore	-46.1	168.93	57	95
Winton	-46.15	168.32	47	76
Tuatapere	-46.13	167.68	45	71
Otautau Edendale	-46.15 -46.32	168 168.78	46 48	74 80
Wyndham	-46.32	168.85	48	80
Riverton/Aparima	-46.36	168	49	77
Invercargill	-46.41	168.32	49 54	87
Bluff	-46.49	168.29	51	81
Notes: This table is based on inf	ormation produced by	/ the National Institute for	Water and Atmospheri	c Research (NIWA) in
December 2019, and the	rainfall intensities are also available online in	based on historical rain ga	auge data.	
			nd based on historical	rain gauga data and
		any location in New Zeala ous climate change scena		rain gauge data and
	ESS, INNOVATION	AND EMPLOYMENT		 5 November 2020

E1/AS1 Appendix A

Location	Latitude degrees	Longitude degrees	10% AEP intensity mm/hr	2% AEP intensity mm/hr
Milton	-46.12	169.97	56	88
Clinton	-46.2	169.38	53	86
Balclutha	-46.23	169.73	55	87
Stirling	-46.25	169.78	54	85
Kaitangata	-46.28	169.85	54	85
Owaka	-46.45	169.65	49	77
OTAGO				
Te Anau	-45.42	167.72	48	75
Vanapouri	-45.57	167.62	51	78
_umsden	-45.73	168.43	52	87
Riversdale	-45.9	168.73	50	84
Dhai	-45.93	167.95	50	80
Gore	-46.1	168.93	57	95
Winton	-46.15	168.32	47	76
Tuatapere	-46.13	167.68	45	71
Otautau	-46.15	168	46	74
Edendale	-46.32	168.78	48	80
Wyndham	-46.33	168.85	49	82
Riverton/Aparima	-46.36	168	49	77
Invercargill	-46.41	168.32	54	87
Bluff	-46.49	168.29	51	81

Notes:

This table is based on information produced by the National Institute for Water and Atmospheric Research (NIWA) in December 2019, and the rainfall intensities are based on historical rain gauge data.

Rainfall intensity data is also available online in digital form from the National Institute for Water and Atmospheric Research (NIWA) High Intensity Rainfall Design System (HIRDS).

HIRDS provides rainfall intensity estimates for any location in New Zealand based on historical rain gauge data and Amend 11 Nov 2020

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

SURFACE WATER

5 November 2020

Current E1 Surface Water acceptable solutions and verification methods

(Text to be amended shown in red)

SURFACE WATER

Acceptable Solution E1/AS2

(Included in Amendment 11)

1.0 AS/NZS 3500.3 Stormwater drainage

1.0.1 AS/NZS 3500.3, as modified by Paragraph 1.0.4, is an Acceptable Solution for the design and installation of surface water drainage systems.

COMMENT:

Comparable terminology		
AS/NZS 3500.3	E1/AS1	
Eaves gutter	External gutter	
Box gutter	Internal gutter	
Inlet pit	Surface water sump	
Stormwater pit	Access/Inspection	

1.0.2 This Acceptable Solution is limited to *buildings* and *sitework* where *surface water* results only from rainfall, and which are:

a) Free from a history of flooding,

b) Not adjacent to a watercourse,

c) Not located in low lying area, and

d) Not located in a secondary flow path. 1.0.3 Buildings to which this Acceptable

Solution is applied shall comply with the requirements of Acceptable Solution E1/AS1 Section 2.0 Minimum Acceptable Floor Level.

1.0.4 Modifications to AS/NZS 3500.3 Clause 1.2.2 Delete and replace with:

"In New Zealand, this Standard may be used for compliance with NZBC Clause E1 Surface Water, in accordance with NZBC Acceptable Solution E1/AS2.

Where alternative New Zealand Standards are referenced (e.g. NZS 5807) the New Zealand Standard shall be used for New Zealand only.

Clause 3.3.5.2 Delete and replace with: "Ten minutes duration rainfal intensity (in mm/hr) for New Zealand shall be determined

for ARIs of 10 years (10% AEP) and 50 years (2% AEP) using rainfall frequency duration nformation available from: (a) the local territorial authority,

5 November 2020

(b) NZBC Acceptable Solution E1/AS1 Appendix A, or

c the National Institute for Water and Atmospheric Research (NIWA). NOTES:

Rainfall intensity data is available online in digital form from the National Institute for Water and Atmospheric Research (NIWA) High Intensity Rainfall Design System (HIRDS

Acceptable Solution E1/AS2

- HIRDS provides rainfall intensity estimates for any location in New Zealand based on historical rain gauge data and also provides projections of future rainfall intensities for various climate change scenarios.
- Where there are differences between the design rainfall intensities obtained using sources (a), (b) and (c) for a particular location, the most conservative rainfall intensity should be used for design calculations.
- 3 Territorial Authorities may refer to any available Regional Council rainfall data to establish design rainfal intensities for their city or district."
- Clause 3.4.5 Delete and replace with:

"3.4.5 Higher catchment area

Stormwater from a higher catchment area shall be discharged directly to a rainhead or a sump, and the rainhead or sump shall be sized in accordance with this Standard

Alternatively, a spreader that meets the requirements of NZBC Acceptable Solution E2/AS1 may be used.

The downpipe and gutter system of the lower catchment shall be sized in accordance with Clause 3.4 to take into account the total flow from both catchments.

The rainhead or sump may need to be larger than that sized in accordance with this Standard and include a device to dissipate energy. Sizing of such a rainhead or sump is beyond the scope of this Standard and may require hydraulic tests.

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Proposed amendments to E1 Surface Water acceptable solutions and verification methods (Proposed text in blue)

SURFACE WATER

Acceptable Solution E1/AS2 (Included in Amendment 11)

1.0 AS/NZS 3500.3 Stormwater drainage

1.0.1 AS/NZS 3500.3, as modified by Paragraph 1.0.4, is an Acceptable Solution for the design and installation of surface water drainage systems.

COMMENT:

Comparable terminology AS/NZS 3500.3 E1/AS1 Eaves gutter External gutter Box gutter Internal gutter Inlet pit Surface water sump Access/Inspection Stormwater pit chamber

1.0.2 This Acceptable Solution is limited to buildings and sitework where surface water results only from rainfall, and which are:

a) Free from a history of flooding,

b) Not adjacent to a watercourse,

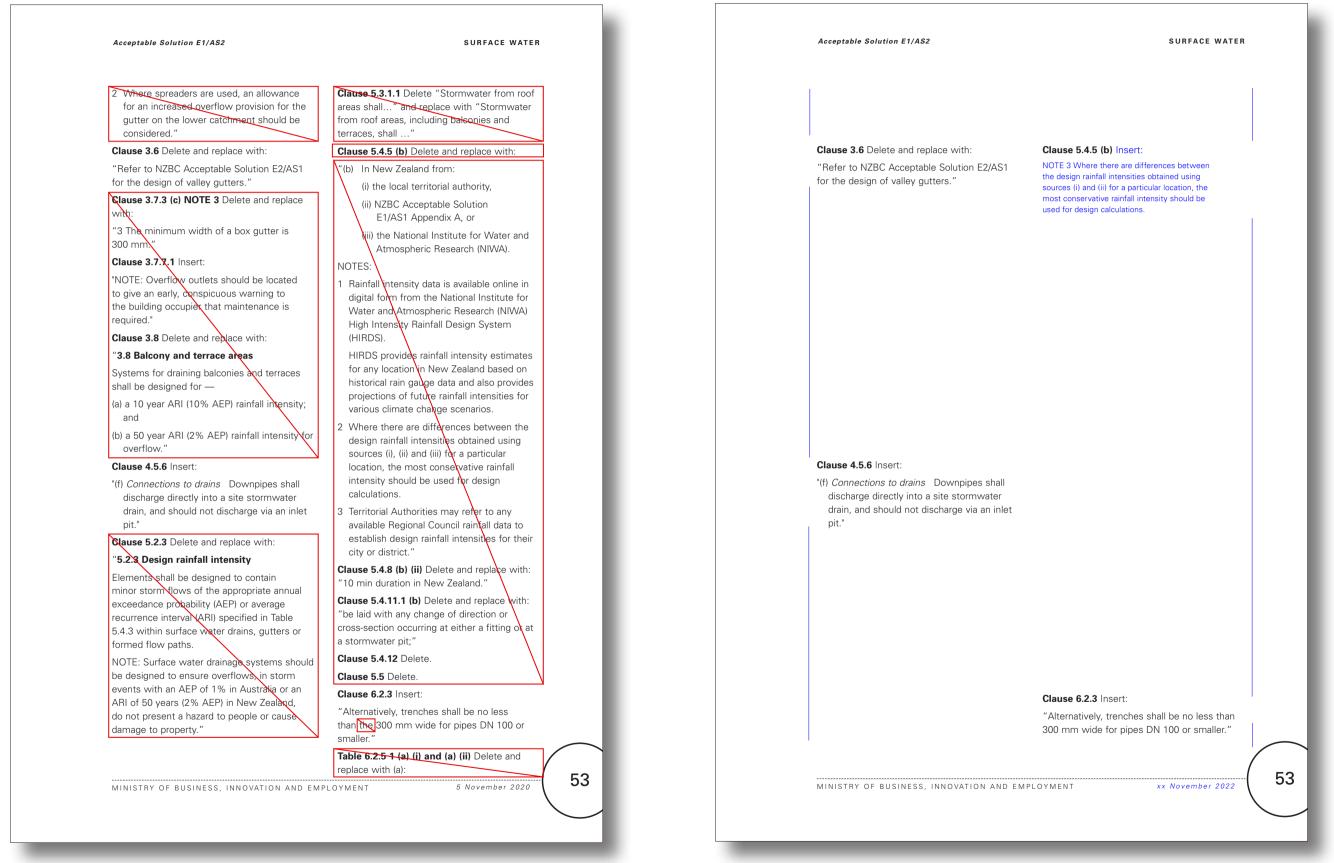
c) Not located in low lying area, and

d) Not located in a secondary flow path.

1.0.3 Buildings to which this Acceptable Solution is applied shall comply with the requirements of Acceptable Solution E1/AS1 Section 2.0 Minimum Acceptable Floor Level. 1.0.4 Modifications to AS/NZS 3500.3

52

xx November 2022


52

Acceptable Solution E1/AS2

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current E1 Surface Water acceptable solutions and verification methods

(Text to be amended shown in red)

Proposed amendments to E1 Surface Water acceptable solutions and

verification methods (Proposed text in blue)

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red) verification methods (Proposed text in blue) SURFACE WATER Acceptable Solution E1/AS2 Minimum pipe cover-finished surface to top of pipe (d) each connection to an existing site Table 6.2.5: stormwater drain; and (e) at any change of direction greater than 45° . Location Ductile iron Plastics NOTES: galvanised steel 1 Inspection openings may be replaced by a 1 Not subject to Minimum cover, mm stormwater pit. vehicular loading: (a) Without pavement 2 No inspection opening is needed at a 300 connection to a site stormwater drain where the branch drain serves only a single Clause 6.2.8 (d) (ii) Delete and replace with: external downpipe or an inlet pit." 'In New Zealand, as specified in NZBC Clause 7.4.3 Delete and replace with: Acceptable Solution E1/AS1." "7.4.3 Access Clause 6.3.1.1 (d) Delete and replace with: Access to below-ground inspection openings "(d) using 45°, sweep or oblique junctions; shall be either byand (a) a stormwater pit (e) with changes in direction not exceeding (b) a sealed riser terminated at ground level or 90° at any point." floor level in an accessible position; or Clause 6.3.3 (b) Delete and replace with: (c) a removable cap at drain level for drains of 'For other properties, the minimum diameter DN 150 or smaller. of a stormwater drain that is downstream of a NOTE: Options (a) or (b) are preferred in stormwater pit or inlet pit shall be the greater landscaped or sealed areas, or where the of depth of an inspection opening would be (i) the diameter of the largest pipe entering the greater than 1000 mm below finished ground pit; or level ii) DN 100." Clause 7.5.1.1 (b) Delete. Clause 6.4 Subsoil drains Insert: Clause 7.5.1.2 Delete and replace with: "In New Zealand, this Clause is informative "7.5.1.2 Inlet pits only." Inlet pits shall be installed --Clause 6.4.1 NOTES Insert: (a) to allow the collection and ingress of "4 Subsoil drains should discharge to the site surface water to a site stormwater drain. stormwater drainage system via an inlet pit (b) with sufficient capacity at the bottom for or silt arrester the settlement of silt and debris, and 5 Subsoil drains should be laid at grade with a (c) with a submerged (or trapped) outlet which uniform fall of not less than 1:300." prevents floatable solids entering the site Clause 7.4.1 Delete and replace with: stormwater drain "7.4.1 Location NOTES: For other than single dwellings, inspection 1. Inlet pits should not receive discharge from openings for the maintenance of site stormwater drains. stormwater drains shall be installed at — 2. Refer to NZBC Acceptable Solution (a) each point of connection; E1/AS1 Figure 8 and Figure 9 for examples (b) even spacings not more than 30 m apart; of surface water sumps (inlet pits) which incorporate submerged outlets and provide (c) each end of any inclined jump-up that sufficient capacity for the settlement of silt exceeds 6 m in length: and debris." 54 5 November 2020 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

stormwater pit. Clause 6.3.1.1 (d) Delete and replace with: "7.4.3 Access "(d) using 45°, sweep or oblique junctions; shall be either by-(e) with changes in direction not exceeding (a) a stormwater pit, DN 150 or smaller level '

NOTES

Clause 6.4 Subsoil drains Insert:

"In New Zealand, this Clause is informative only '

Clause 6.4.1 NOTES Insert:

90° at any point."

- "4 Subsoil drains should discharge to the site stormwater drainage system via an inlet pit or silt arrester
- 5 Subsoil drains should be laid at grade with a uniform fall of not less than 1:300."

Clause 7.4.1 Delete and replace with:

"7.4.1 Location

SURFACE WATER

For other than single dwellings, inspection openings for the maintenance of site stormwater drains shall be installed at --

(a) each point of connection:

xx November 2022

(b) even spacings not more than 30 m apart; (c) each end of any inclined jump-up that exceeds 6 m in length;

54

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

NOTES:

Proposed amendments to E1 Surface Water acceptable solutions and

Acceptable Solution E1/AS2

(d) each connection to an existing site stormwater drain: and

(e) at any change of direction greater than 45°.

1 Inspection openings may be replaced by a

2 No inspection opening is needed at a connection to a site stormwater drain where the branch drain serves only a single external downpipe or an inlet pit."

Clause 7.4.3 Delete and replace with:

Access to below-ground inspection openings

(b) a sealed riser terminated at ground level or floor level in an accessible position; or

(c) a removable cap at drain level for drains of

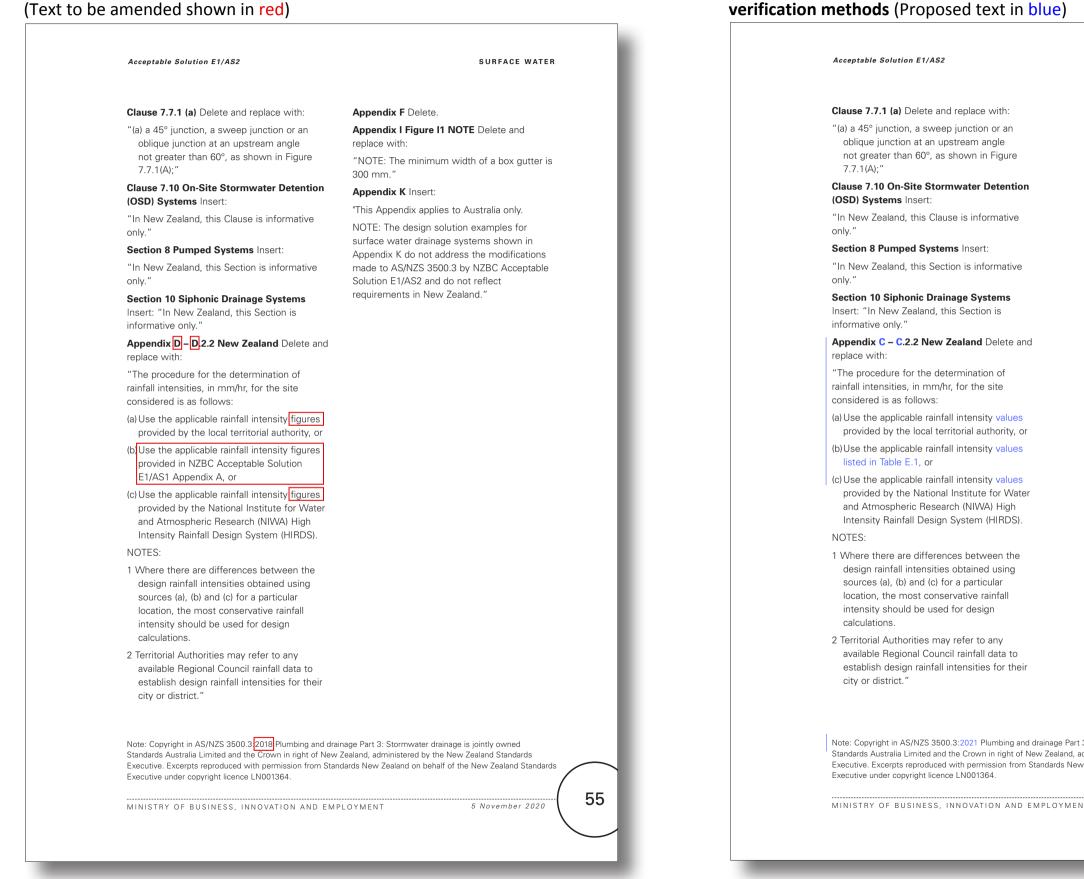
NOTE: Options (a) or (b) are preferred in landscaped or sealed areas, or where the depth of an inspection opening would be greater than 1000 mm below finished ground

Clause 7.5.1.1 (b) Delete.

Clause 7.5.1.2 Delete and replace with:

"7.5.1.2 Inlet pits

(a) to allow the collection and ingress of surface water to a site stormwater drain,


(b) with sufficient capacity at the bottom for the settlement of silt and debris, and

(c) with a submerged (or trapped) outlet which prevents floatable solids entering the site stormwater drain.

1. Inlet pits should not receive discharge from stormwater drains.

2. Refer to NZBC Acceptable Solution E1/AS1 Figure 8 and Figure 9 for examples of surface water sumps (inlet pits) which incorporate submerged outlets and provide sufficient capacity for the settlement of silt and debris."

Current E1 Surface Water acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to E1 Surface Water acceptable solutions and

SURFACE WATER

3: Stormwater drainage dministered by the New Zealand on behalf of tl		ards		
T	xx November 2022		55	
		_		

Proposed E1 Surface Water - No changes proposed to this page

	surface water $L_{D} = \frac{1}{\sqrt{12}} \sqrt{12} $	Index E1/VM1 & AS1/AS2
	Index E1/VM1 & AS1/AS2 (Revised by Amendment 4)	
	All references to Verification Methods and Acceptable Solutions are pre- respectively.	eceded by VM or AS
	Building site	
	Buildings	
	Catchment characteristics	1
	Downpipes	1
	installation	3
	materials	
	sizing AS1 4.2, Table 9	5
	Drainage	<u>_</u>
	access points	
	access chambers	
	inspection chambers	
	3.7.5, Figure 1	
	inspection points AS1 3.7.1, 3.7.2 b	
	rodding points	0
	alignment AS1 3.3, 3.7.3 a), Figures 4 and 9	5
Amend 7	bedding and backfilling	3
Sep 2010	other Acceptable Solutions AS1 3.9.8	
	materials AS1 3.9.	
	placing and compacting AS1 3.9.0	
	proximity to buildings	
	trench slope	
	bubble-up chamber system	
	downstream water systems	
	drains under buildings AS1 3.7.6, 3.7.7, 3.7.8	
	gradient	
	minimum gradient	2
	joints	3
	leakage tests	
	high pressure air test	
	low pressure air test VM1 8. water test VM1 8.	
	materials	
	open water, upstream of site VM1 4.3	
	piped water, upstream of site VM1 4.	1
	quantity	0
	tailwater depth	7
\frown		
56		
	30 September 2010 DEPARTMENT C	OF BUILDING AND HOUSING
\bigcirc		
\sim		

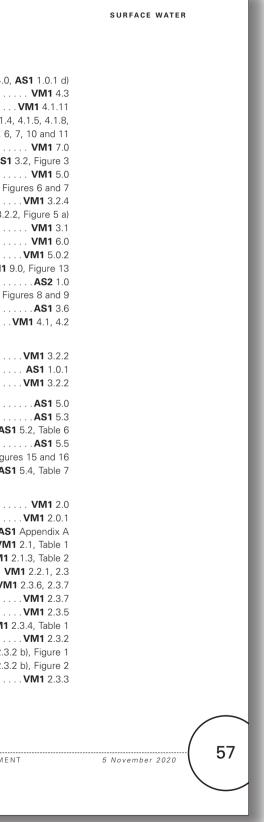
2
are
51 1 11 1
51 1 1 ar
3, 4
AS1 Tab Tab 7, 3 1 3. gure 3.7. gure 3.7. gure 4 ar gure 51 3 51 3 6 ar 7, 3 51 3 6 ar 7, 3 51 3 7, 3 7. Tab Tab AS1 /M1 /M1 /M1 /M1 /M1 /M1 /M1 /M1 /M1 /M
/ E N

Index E1/VM1 & AS1/AS2

preceded by VM or AS

1.0.1 1.0.3 1.0.1 and 2 4.2.1 5.1.1 **51** 4.3 able 4 able 5 3.7.8 3.7.1, ure 12 3.7.4, ure 11 7.2 b) ure 10 and 5 ure 13 3.9.8 3.9.5 3.9.6 ure 14 3.9.3 3.9.4 and 7 **11** 4.3 3.7.8 7.3 b) able 2 able 3 **51** 3.8 **11** 8.3 **11** 8.2 **11** 8.1 able 1 **11** 4.2 **11** 4.1 4.1.10 4.1.7

NT OF BUILDING AND HOUSING


Current E1 Surface Water - No changes proposed to this page

Proposed E1 Surface Water - No changes proposed to this page

	Index E1/VM1 & AS1/AS2	SURFACE V
	Drainage (continued)	
	secondary flow	
	downstream drainage VM1 4.3	
	flow	
	headwater depth VM1 4.1.4, 4.1.5, 4.1.8,	
	4.1.9, Figures 5, 6, 7, 10 and 11	
	site – outfall protection	
	sizing	
	energy losses VM1 5.0	
	hydraulic design of drains VM1 1.0.4, 3.2, Figures 6 and 7	
	air entrainment	
	headwater depth VM1 3.2.2, Figure 5 a)	
	minimum size	
	minimum velocity	
	pipe size decrease	
Amend 11	soak pits	
Nov 2020	stormwater	
	sumps	
	upstream water systems	
	Flooding flood risk assessmentVM1 3.2.2	
	historical information. AS1 1.0.1	
	protection from	
	Gutters	
	gradients	
	materials	
	overflow outlets	
	thermal movement	
	Run-off	
	estimation of run-off	
	Rational Method	
	rainfall intensity	
	run-off coefficient	
	slope correction	
	time of concentration VM1 2.2.1, 2.3	
	alternative procedure	
	catchment slopesVM1 2.3.7	
	open channel flow	
	pipe flow	
	time of entry	
	overland flow	
	road channel flow	
	time of network flowVM1 2.3.3	
	MINISTRY OF BSUBINESS, INNOVATION AND EMPLOYMENT	5 November 2

Index E1/VM1 & AS1	/AS2
	drainage
	epth
sizing	vtection
hydraulic des	s
	r depth
	size
	velocity
	crease
soak pits	· · · · · · · · · · · · · · · · · · ·
Nov 2020 Stormwater	
	llets
upstream water	systems
Flooding	
flood risk asses	sment
historical inform	ation
protection from	•••••••••••••••••••••••••••••••••••••••
Gutters	
gradients	
materials	AS
overflow outlets	3
•	AS1 5.1, Figu
thermal movem	ent
Run-off	
estimation of ru	n-off
Rational Method	
	sity VM1 2.2, AS
	icient
	tion
	entrationV
	t slopes nnel flow
	ntry
	d flow
	annel flow VM1 2.3
time of ne	etwork flow

MINISTRY OF BSUBINESS, INNOVATION AND EMPLOYMENT

Appendix B. Proposed changes to the acceptable solutions and verification methods for clause G12 Water Supplies

As part of Proposals 1 through 7, here are proposed changes to the acceptable solutions and verification methods for clause G12 Water Supplies. The list below identifies the portions of the documents that are proposed to be amended as part of each proposal. The proposed changes are presented as part of the full document with the new or amended text shown in blue. This also includes the proposed text for the new Acceptable Solution G12/AS3.

Proposal 1. Lead in plumbing products

> Amendments to Acceptable Solution G12/AS1

- Issue the new Paragraph 2.1.3 and comment to limit the maximum allowable lead content within plumbing products that contain copper alloy and are intended for use in contact with potable water for human consumption and cite the following testing standard for demonstrating compliance NSF/ANSI/CAN 372: 2020 Drinking Water System Components - Lead Content
- Issue the new Paragraph 2.2.3 to require components to be dezincification resistant and cite the following testing standard AS 2345: 2006 (R2016) Dezincification resistance of copper alloys

Proposal 2. Water temperatures

- > Amendments to Acceptable Solution G12/AS1 to limit maximum hot water delivery temperatures
 - Amend the maximum water temperatures in Paragraph 6.14.1 to reduce the risk of scalding
 - Amend Paragraph 6.14.2, Figure 16 and provide a new Table 7 to list acceptable hot water delivery temperature control devices and manufacturing standards
 - Amend Paragraph 6.14.3 to replace the term 'mixing' with 'delivery temperature control'
 - Redesignate Paragraph 6.14.4 as an informative comment to Paragraph 6.14.3 and include additional comments clarifying that alternative methods of controlling Legionella are outside the scope of G12/AS1
- > Cite the following water temperature control device standards in Acceptable Solution G12/AS1
 - BS EN 1111: 2017 Sanitary tap ware Thermostatic mixing valves (PN 10) General technical specifications
 - BS EN 1287: 2017 Sanitary tapware. Low pressure thermostatic mixing valves. General technical specification
 - AS 4032: Water supply
 - Part 1: 2005 Valves for the control of heated water supply temperatures Thermostatic mixing valves -Materials design and performance requirements
 - Part 2: 2005 (R2015) Tempering valves and end of line temperature-actuated devices
 - Part 3: 2004 Requirements for field-testing, maintenance or replacement of thermostatic mixing valves, tempering valves and end-of-line temperature control devices
 - Part 4: 2014 Thermostatically controlled taps for the control of heated water supply temperatures

Proposal 3. Protection of potable water

Amendments to Acceptable Solution G12/AS1 to protect potable water supplies from backflow
 Amend G12/AS1 Paragraphs 3.3.1 Comment, 3.3.2 Comment, 3.3.3 Comment, 3.4.6, 3.5.2 Comment, 3.6.2, 3.6.3, 3.6.4, 3.7.2, 4.3.1; and Table 2 Notes; and Figure 2

- Issue new G12/AS1 Paragraphs 3.4.3 c), 3.4.6, 3.6.1 b), c) and comment, 3.6.3 b), c) and comment 4, 3.6.4 v) and comment; and Table 2A
- > Cite the following backflow prevention standards in Acceptable Solution G12/AS1
 - AS/NZS 2845.3: 2020 Water supply Backflow prevention devices Field testing and maintenance of testable devices
 - New Zealand Legislation Water Services Act 2021
 - Water New Zealand and Master Plumbers, Gasfitters and Drainlayers NZ Inc, NZ Backflow testing standard 2019 Field testing of backflow prevention devices and verification of air gaps
- > Provide new definitions for:
 - Drinking water standards
 - Containment backflow protection
 - Point of supply
 - Potable water
- > Other amendments to Acceptable Solution G12/AS1 as part of this proposal
 - G12/AS1 Paragraph 4.3.1 Amend the text to cite AS/NZS 3500.1 for pipeline identification
 - -G12/AS1 Figure 2 Amend the text in diagram (a) to clarify the clear space required

Proposal 4. AS/NZS 3500 Plumbing and drainage standards

- > Amendments to Acceptable Solutions G12/AS1
 - Cite the new AS/NZS 3500.1: 2021 Plumbing and drainage Water Services
- > Amendments to Acceptable Solutions G12/AS2
 - Cite the new AS/NZS 3500.4: 2021 Plumbing and drainage Heated water services
- > Issuing the new Acceptable Solutions G12/AS3
 - Issue the new Acceptable Solution G12/AS3 which cites AS/NZS 3500.1: 2021 Plumbing and drainage Water Services and AS/NZS 3500.4: 2021 Plumbing and drainage – Heated water services as a means of demonstrating compliance with clause G12

Proposal 5. Plumbing system components

- > Amendments to Acceptable Solution G12/AS1
 - Introducing expansion vessels as an option for managing thermal expansion within mains pressure storage water heating systems
 - Amend G12/AS1 Paragraphs 6.2.2, 6.3.3 a), 6.6.1 and 6.6.3
 - Issue new G12/AS1 Paragraphs 6.6.5 c), 6.6.7, 6.6.8, Table 7 and Figure 8 (a)
 - Cite BS EN 13831: 2007 Closed expansion vessels with built-in diaphragm for installation in water

Seismic restraint of water heaters

- Amend G12/AS1 Figure 14 to provide more options for the positioning of seismic restraint straps

Accessible Taps

– Amend G12/AS1 Paragraph 8.0.1 and Figure 18 to clarify the requirements for accessible lever handle taps, remove the provisions for capstan handle taps and allow for sensors taps to be provided for use by people with disabilities

Wet-back water heaters

- Amend G12/AS1 Paragraph 6.13.1
- Cite Part 4 of NZS 4603: 1985 Installation of low-pressure thermal storage electric water heaters with copper cylinders (open-vented systems): Amendment 1 for the design and installation of wet-back water heating systems

UV resistant pipework insulation material

- Amend G12/AS1 Paragraphs 6.7.6 and 6.8.3 b)

Appendix B. Proposed changes to the acceptable solutions and verification methods for clause G12 Surface Water

 Issue new G12/AS1 Paragraph 6.7.7 to specify that pipework insulation material exposed to direct sunlight to be UV resistant or suitably protected to withstand the degradation that can be caused by exposure to ultraviolet light

Cleaning and disinfection of water storage tanks

 Issue new G12/AS1 Paragraph 5.1.2 and 5.2.2 comment to cite AS/NZS 3500.1: 2021 for the cleaning and disinfection of potable water tanks and overflow pipe discharge locations.

Minimum and maximum water pressures at sanitary fixtures

- Issue new G12/AS1 Paragraphs 5.3.1, 5.3.2 and 5.3.3 and a comment to specify minimum and maximum water pressures for sanitary fixtures, sanitary appliances and hose taps.

Water supply pipework installation standards

- Amend G12/AS1 Paragraph 7.4.1
- Issue new G12/AS1 Paragraphs 7.5.2 and 7.5.3
- Cite the following water supply pipework installation standards in Acceptable Solution G12/AS1
 - AS/NZS 2033: 2008 Installation of polyethylene pipe systems Amendment 1, 2
 - AS 4809: 2017 Copper pipe and fittings Installation and commissioning

Unintentional heating of cold water

 Issue the new Paragraph 7.3.1 and a comment to require water supply systems to be installed in a manner that avoids the unintentional heating of cold water

Relief valve drain discharge locations and tundish drain sizing

– Issue Paragraph 6.7.2 d) comment, Figure 12 Note and Figure 13 Note to provide examples of acceptable storage water heater relief valve drain discharge locations and additional information regarding the sizing of relief valve tundish drains

Minimum pipework cover below ground level for non-trafficable areas

 Amend Paragraph 7.3.2 to reduce the minimum cover of water supply pipes below gardens, lawns, paths paving for pedestrian use or other areas not subjected to vehicular traffic to 300 mm

Flushing of water supply systems on completion of construction

Issue Paragraph 7.7.1 to require newly installed and altered water supply systems to be flushed at each discharge point to remove any dirty water or debris on completion of construction.

- $\,$ > Amendments to Verification method G12/VM1 for the water pipe sizing calculation method
 - Remove the citation of AS/NZS 3500.1 and AS/NZS 3500.4
 - Cite the loading unit method of the Chartered Institute of Plumbing and Heating Engineering,
 Plumbing Engineering Services Design Guide, Hornchurch 2002 for determining maximum
 simultaneous flow rates for use in sizing hot and cold water services in multiple types of buildings

Proposal 6. Plumbing and drainage system material standards

> Cite the following water supply system material standards in Acceptable Solution G12/AS1

- BS 6920 Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water
- Part 1: 2000 Specification
- Part 2: 2000 Methods of tests
- AS 1357.1: 2019 Valves primarily for use in heated water systems, Part 1: Protection valves
- AS 1432: 2004 Copper tubes for plumbing, gasfitting and drainage applications
- AS 3498: 2020 Safety and public health requirements for plumbing products Water heaters and hotwater storage tanks
- AS 3688: 2016 Water supply and gas systems Metallic fittings and end connectors

Appendix B. Proposed changes to the acceptable solutions and verification methods for clause G12 Surface Water

- AS 5200.053 Plumbing and drainage products Stainless steel pipes and tubes for pressure applications
- AS/NZS 1477: 2017 PVC pipes and fittings for pressure applications
- AS/NZS 2492: 2007 Cross-linked polyethylene (PE-X) pipes for pressure applications
- AS/NZS 2537: Mechanical jointing fittings for use with crosslinked polyethylene (PE-X) for pressure applications
 - Part 1: 2011 Plastics piping systems for hot and cold-water installations Crosslinked polyethylene (PE-X) - General
 - Part 2: 2011 Plastics piping systems for hot and cold-water installations Crosslinked polyethylene (PE-X) – Fittings Amendment 1
 - Part 3: 2011 Plastics piping systems for hot and cold-water installations Crosslinked polyethylene (PE-X) - Fitness for purpose of the system
 - Part 4: 2011 Plastics piping systems for hot and cold-water installations Crosslinked polyethylene (PE-X) - Guidance for the assessment of conformity.
- AS/NZS 2642.1: 2007 Polybutylene pipe systems Polybutylene (PB) pipe extrusion compounds Amendment 1
- AS/NZS 3879: 2011 Solvent cements and priming fluids for PVC (PVC-U and PVC-M) and ABS and ASA pipes and fittings
- AS/NZS 4020: 2018 Testing of products for use in contact with drinking water
- AS/NZS 4129: 2020 Fittings for polyethylene (PE) pipes for pressure applications
- AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure applications Amendment 1
- New Zealand Regulations Gas (Safety and Measurement) Regulations 2010
- Remove the following references from G12/AS1
 - NZS/BS 1387: 1985 Specification for screwed and socketed steel tubes and tubulars and for plain end steel tubes suitable for welding or screwing to BS 21 pipe threads Amendment 1
 - NZS 5807.2: 1980 Code of practice for industrial identification by colour, wording or other coding Identification of contents of piping, conduit and ducts Amendments 1, 2
 - NZS 7601: 1978 Specification for polyethylene pipe (Type 3) for cold water services
 - NZS 7602: 1977 Specification for polyethylene pipe (Type 5) for cold water services Amendment 1
 - NZS 7610: 1991 Specification for blue polyethylene pipes up to nominal size 63 for below ground use for potable water Amends: 1, 2, 3
- › Acceptable Solution G12/AS1
 - Table 1 Amend the list of materials for hot and cold-water pipes and fittings to include additional types of materials and cite the relevant standards for their manufacturing and installation, and remove galvanised steel as an acceptable material
 - Table 5 Amend the cited regulations for gas storage and instantaneous water heaters
 - Paragraph 2.2.4 Provide a new comment indicating that WaterMarked products may be verified as satisfying the relevant performance requirements of Building Code Clause G12 Water Supplies.

Proposal 7. Resolving conflicts and editorial changes

- > G12/AS1 Storage water heater vent pipe standing water level Add a new dimension to G12/AS1 Figure 7 to align the standing water level dimension with the requirements of G12/AS1 Paragraph 6.8.2 e)
- G12/AS1 Free outlet (push through) storage water heating system relief valve Add a relief valve on the free outlet (push through) water heater shown in Figure 11 to align with the requirements of G12/AS1 Paragraph 6.4.2
- > G12/AS1 Legionella control within circulatory heated water systems Move G12/AS1 Paragraph 6.14.4 to an informative comment to Paragraph 6.14.3 and provide clarification that the design and installation of hot or warm water circulating systems and alternative methods of controlling Legionella within these systems is outside the scope of G12/AS1
- > G12/AS1 Water pipe size table references Amend Paragraph 5.3.1 comment, Table 3 and Table 4 to clarify pipe sizing table references

- > G12/AS1 Paragraph 7.6.2 Update structure of PVC-U pipework testing method paragraph for consistency
- G12/AS2 Flashing of pipe penetrations through profiled metal roofs Amend the text in G12/AS2 Paragraph 5.2.5 and 5.2.6 and Figure 6 for flashing dimensions for consistency with equivalent requirements found in Acceptable Solution E2/AS1 Paragraph 8.4.17 a).

Current G12 Water Supplies - No changes proposed to this page

Proposed G12 Water Supplies - No changes proposed to this page

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI **Acceptable Solutions and Verification Methods**

For New Zealand Building Code Clause **G12 Water Supplies**

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause **G12 Water Supplies**

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) Status of Verification Methods and Acceptable Solutions Status of Verification Methods and Acceptable Solutions Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code. establishing compliance with the New Zealand Building Code. A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply. alternative ways to comply. Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document. the Definitions at the start of this document. Enquiries about the content of this document should be directed to: Enquiries about the content of this document should be directed to: MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT ΗΙΚΙΝΑ WHAKATUTUKI Ministry of Business, Innovation and Employment Ministry of Business, Innovation and Employment PO Box 1473, Wellington.6140 PO Box 1473, Wellington.6140 Telephone 0800 242 243 Telephone 0800 242 243 Email: info@building.govt.nz Email: info@building.govt.nz Verification Methods and Acceptable Solutions Verification Methods and Acceptable Solutions are available from www.building.govt.nz are available from www.building.govt.nz New Zealand Government New Zealand Government © Ministry of Business, Innovation and Employment 2019 © Ministry of Business, Innovation and Employment 2022 This document is protected by Crown copyright, unless indicated otherwise. The Ministry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the This document is protected by Crown copyright, unless indicated otherwise. The Ministry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the purposes of your business provided you reproduce the document accurately and not in an inappropriate or misleading context. You may not distribute this document to others or reproduce it for sale or profit. purposes of your business provided you reproduce the document accurately and not in an inappropriate or misleading context. You may not distribute this document to others or reproduce it for sale or profit. The Ministry of Business, Innovation and Employment owns or has licences to use all images and trademarks in this document. You must not use or reproduce images and The Ministry of Business, Innovation and Employment owns or has licences to use all images and trademarks in this document. You must not use or reproduce images and trademarks featured in this document for any purpose (except as part of an accurate trademarks featured in this document for any purpose (except as part of an accurate reproduction of this document) unless you first obtain the written permission of the Ministry of Business, Innovation and Employment. reproduction of this document) unless you first obtain the written permission of the Ministry of Business, Innovation and Employment. 2 2

Current G12 Water Supplies acceptable solutions and verification methods

(Text to be amended shown in red)

Document Status

The most recent version of this document (Amendment 12), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 27 June 2019 and supersedes all previous versions of this document.

The previous version of this document (Amendment 11) will cease to have effect on 31 October 2019

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

	Date	Alterations		
First published	July 1992			
Amendment 1	September 1993	pp. vi–viii, References p. ix, Definitions p. 15, Table 4	p. 16, 4.5.1, 4.5.3 p. 19, 5.2.2 b) p. 22, Table 7	p. 26, Index
Amendment 2	19 August 1994	pp. i and ii, Document History p. v, Contents p. viii, References	p. 3, 2.2.1 e) p. 6, 2.6, 2.6.1 p. 19, 4.13.1, 4.14, 4.14.1	p. 26, 29, Index
Amendment 3	1 December 1995	p. ii, Document History pp. vi–viii, References	p. 5, Table 1 p. 6, 2.5.2	
Second edition published July 2001	Effective from 1 October 2001	Document revised – Second edition issued		
Amendment 4	6 January 2002	pp. 3–5 Code Clause G12		
Amendment 5	25 February 2004	p. 2, Document History p.7, Contents pp. 9–11 References	pp. 23-38, 3.7.1, 3.7.4, 4.1, 6.2.1, 6.3.2–6.15, Figure 13 pp. 43-45 Index	
Amendment 6	23 June 2007	p. 2, Document History, Status pp. 9 and 11, References	p. 13, Definitions p. 15, VM1 1.0.1	
Third edition published October 2007	Effective from 1 December 2007	G12/AS1 amended: p. 27, Table 5 p. 32, 6.5.1 p. 35, 6.9, 6.10	p. 36, 6.11.5 p. 37, 6.14.3 p. 38, 6.15 (deleted) p. 40, 7.5.2	New Acceptable Solution G12/AS2 included
Amendment 7	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 3 and 4, Code Clause G12 pp. 7–10, References	p. 17, G12/AS1 2.1.2, Table 1 p. 27, G12/AS1 Table 5 p. 32, G12/AS1 Table 6	p. 41, G12/AS1 9.3.2
Amendment 8	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status pp. 7–10, References p.12, Definitions	p. 21, G12/AS1 3.6.1 p. 23, G12/AS1 3.7.2	p. 41, G12/AS1 9.3.2 p. 43, G12/AS2 1.1.1
Amendment 9	14 February 2014 until 30 May 2017	p. 2A, Document History, Status pp 7, 8, 10 References p. 11 Definitions	p. 17 G12/AS1 2.1.2 p. 27 G12/AS1 Table 5 p. 40 G12/AS1 7.5.2	pp. 44–47, 49–50, 64, G12/AS2 2.1.4, 3.1.1, 3.2.1 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3
Amendment 10	Effective 1 January 2017 until 31 March 2019	pp. 9, 10 References p.17 G12/AS12.2, Table 1 p. 21 G12/AS1 3.6.2	p. 23 G12/AS1 3.7.4 p. 24 G12/AS1 5.2.3 p. 32 G12/AS1 Table 6	p. 35 G12/AS1 6.11.3 p. 43 G12/AS2 1.1.1 p. 51 G12/AS2 4.2.2, 5.0.1
Amendment 11	Effective from 30 November 2018 until 31 October 2019	p. 10 References		
Amendment 12	Effective 27 June 2019	p. 10 References p. 15 G12/VM1 1.0.1	p. 20 G12/AS1 3.5.2 p. 51 G12/AS2 4.2.2	

2A

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Document Status

The most recent version of this document (Amendment 13), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from X November 20XX and supersedes all previous versions of this document.

The previous version of this document (Amendment 12) will cease to have effect on X November 20XX.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

	Date	Alterations	
	Date	Alterations	
First published	July 1992		
Amendment 1	September 1993	pp. vi–viii, References p. ix, Definitions p. 15, Table 4	p p
Amendment 2	19 August 1994	pp. i and ii, Document History p. v, Contents p. viii, References	p p p
Amendment 3	1 December 1995	p. ii, Document History pp. vi–viii, References	p p
Second edition published July 2001	Effective from 1 October 2001	Document revised – Second edition issued	
Amendment 4	6 January 2002	pp. 3–5 Code Clause G12	
Amendment 5	25 February 2004	p. 2, Document History p.7, Contents pp. 9–11 References	p
Amendment 6	23 June 2007	p. 2, Document History, Status pp. 9 and 11, References	р. р.
Third edition published October 2007	Effective from 1 December 2007	G12/AS1 amended: p. 27, Table 5 p. 32, 6.5.1 p. 35, 6.9, 6.10	р. р. р.
Amendment 7	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 3 and 4, Code Clause G12 pp. 7–10, References	р. р. р.
Amendment 8	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status pp. 7–10, References p.12, Definitions	р. р.
Amendment 9	14 February 2014 until 30 May 2017	p. 2A, Document History, Status pp 7, 8, 10 References p. 11 Definitions	р. р. р.
Amendment 10	Effective 1 January 2017 until 31 March 2019	pp. 9, 10 References p.17 G12/AS12.2, Table 1 p. 21 G12/AS1 3.6.2	р. р. р.
Amendment 11	Effective from 30 November 2018 until 31 October 2019	p. 10 References	
Amendment 12	Effective 27 June 2019	p. 10 References p. 15 G12/VM1 1.0.1	р. р.

16, 4.5.1, 4.5.3 p. 26, Index 19, 5.2.2 b) p. 26, 29, Index 22, Table 7 p. 26, 29, Index 3, 2.2.1 e) p. 26, 29, Index 6, 2.6, 2.6, 2.6.1 p. 413.1, 4.14, 4.14.1 5, Table 1 6, 2.5.2 20, 23-38, 3.7.1, 3.7.4, 4.1, 6.2.1, 6.3.2–6.15, Figure 13 5, Table 1 6, 2.5.2 20, 23-38, 3.7.1, 3.7.4, 4.1, 6.2.1, 6.3.2–6.15, Figure 13 5, 43-45 Index 13, Definitions 15, VM1 1.0.1 36, 6.11.5 36, 6.15 (deleted) 40, 7.5.2 17, G12/AS1 2.1.2, Table 1 p. 41, G12/AS1 9.3.2 27, G12/AS1 7.1 Table 5 G12/AS2 1.1.1 17 G12/AS1 2.1.2, Table 6 p. 41, G12/AS1 9.3.2 23, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 23, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 1, 2 and 3 1, 2 and 3 23 G12/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 1, 2 and 3 23 G12/AS1 3.7.4 p. 35 G12/AS2 6.11.3 24 G12/AS1 5.2 p. 51 G12/AS2 4.2.2, 5.0.1 20 G12/AS1 3.5.2 p. 51 G12/AS2 4.2.2, 5.0.1 20 G12/AS1 3.5.2 p. 51 G12/AS2 4.2.2, 5.0.1 <th></th> <th></th>		
19, 5, 2, 2 b) 22, Table 7 3, 2, 2, 1 e) 6, 2, 6, 2, 6, 2, 6, 1 19, 4, 13, 1, 4, 14, 4, 14, 1 5, Table 1 6, 2, 5, 2 23, 38, 3, 7, 1, 3, 7, 4, 4, 1, 6, 2, 1, 6, 3, 2, -6, 15, Figure 13 2, 43, -45 Index 13, Definitions 15, VM1 1, 0, 1 36, 6, 6, 11, 5 37, 6, 14, 3 38, 6, 15 (deleted) 40, 7, 5, 2 17, G12/AS1 2, 1, 2, Table 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 25, G12/AS1 3, 7, 4 26, G12/AS1 3, 7, 4 27, G12/AS1 1, 7, 5, 2 3, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 20, G12/AS1 3, 5, 2 51,		
19, 5, 2, 2 b) 22, Table 7 3, 2, 2, 1 e) 6, 2, 6, 2, 6, 2, 6, 1 19, 4, 13, 1, 4, 14, 4, 14, 1 5, Table 1 6, 2, 5, 2 23, 38, 3, 7, 1, 3, 7, 4, 4, 1, 6, 2, 1, 6, 3, 2, -6, 15, Figure 13 2, 43, -45 Index 13, Definitions 15, VM1 1, 0, 1 36, 6, 6, 11, 5 37, 6, 14, 3 38, 6, 15 (deleted) 40, 7, 5, 2 17, G12/AS1 2, 1, 2, Table 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 25, G12/AS1 3, 7, 4 26, G12/AS1 3, 7, 4 27, G12/AS1 1, 7, 5, 2 3, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 20, G12/AS1 3, 5, 2 51,		
19, 5, 2, 2 b) 22, Table 7 3, 2, 2, 1 e) 6, 2, 6, 2, 6, 2, 6, 1 19, 4, 13, 1, 4, 14, 4, 14, 1 5, Table 1 6, 2, 5, 2 23, 38, 3, 7, 1, 3, 7, 4, 4, 1, 6, 2, 1, 6, 3, 2, -6, 15, Figure 13 2, 43, -45 Index 13, Definitions 15, VM1 1, 0, 1 36, 6, 6, 11, 5 37, 6, 14, 3 38, 6, 15 (deleted) 40, 7, 5, 2 17, G12/AS1 2, 1, 2, Table 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 21, G12/AS1 3, 6, 1 23, G12/AS1 3, 6, 1 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 25, G12/AS1 3, 7, 4 26, G12/AS1 3, 7, 4 27, G12/AS1 1, 7, 5, 2 3, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 23, G12/AS1 3, 7, 4 24, G12/AS1 3, 7, 4 20, G12/AS1 3, 5, 2 51,		
6, 2.6, 2.6.1 19, 4.13.1, 4.14, 4.14.1 5, Table 1 6, 2.5.2 2, 52, 5, 5, 5, 5, 5, 5, 1, 1, 2, 2, 1, 2, 2, 5, 2, 1, 2, 2, 2, 5, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	19, 5.2.2 b)	p. 26, Index
6, 2.5.2 2. 23-38, 3.7.1, 3.7.4, 4.1, 6.2.1, 6.3.2–6.15, Figure 13 5. 43-45 Index 13, Definitions 15, VM1 1.0.1 36, 6.11.5 37, 614.3 38, 615 (deleted) 40, 7.5.2 17, G12/AS1 2.1.2, Table 1 27, G12/AS1 7.1.2 33, G12/AS1 3.6.1 21, G12/AS1 3.6.1 21, G12/AS1 3.6.1 21, G12/AS1 3.6.1 23, G12/AS1 3.6.1 17 G12/AS1 3.6.1 23, G12/AS1 3.7.2 23, G12/AS1 7.5.2 3, G12/AS1 7.5.2 3, G12/AS1 7.5.2 3, G12/AS1 5.2, 3 20 G12/AS1 3.5.2 51	6, 2.6, 2.6.1	p. 26, 29, Index
6.2.1, 6.3.2–6.15, Figure 13 2. 43-45 Index 13, Definitions 15, VM1 1.0.1 36, 6.11.5 37, 614.3 38, 6.15 (deleted) 40, 7.5.2 17, G12/AS1 2.1.2, Table 1 27, G12/AS1 Table 5 32, G12/AS1 Table 6 21, G12/AS1 3.6.1 17 G12/AS1 2.1.2 23, G12/AS1 3.7.2 17 G12/AS1 2.1.2 23, G12/AS1 3.7.2 40 G12/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 23 G12/AS1 3.7.4 23 G12/AS1 3.5.2 51 G12/AS1 3.5.2 51 G12/AS2 4.2.2		
6.2.1, 6.3.2–6.15, Figure 13 2. 43-45 Index 13, Definitions 15, VM1 1.0.1 36, 6.11.5 37, 614.3 38, 6.15 (deleted) 40, 7.5.2 17, G12/AS1 2.1.2, Table 1 27, G12/AS1 Table 5 32, G12/AS1 Table 6 21, G12/AS1 3.6.1 17 G12/AS1 2.1.2 23, G12/AS1 3.7.2 17 G12/AS1 2.1.2 23, G12/AS1 3.7.2 40 G12/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 23 G12/AS1 3.7.4 23 G12/AS1 3.5.2 51 G12/AS1 3.5.2 51 G12/AS2 4.2.2		
2. 43-45 Index 13, Definitions 15, VM1 1.0.1 36, 61.15 New Acceptable Solution 37, 6.14.3 G12/AS2 included 38, 6.15 (deleted) 13, 027, 014, 012/AS1 9.3.2 27, G12/AS1 Table 5 23, G12/AS1 Table 6 21, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 23, G12/AS1 Table 5 12/AS2 1.1.1 17 G12/AS1 2.1.2 pp. 44-47, 49-50, 64, 012/AS1 9.3.2 27, G12/AS1 7.5.2 G12/AS2 2.1.4, 3.1.1, 3.2.1, 40 G12/AS1 7.5.2 20, G12/AS1 3.7.4 p. 35 G12/AS2 1.1.1 23, G12/AS1 3.7.4 p. 35 G12/AS2 4.2.2, 5.0.1 20, G12/AS1 3.5.2 51 G12/AS2 4.2.2, 5.0.1		
15, VM1 1.0.1 36, 6.11.5 New Acceptable Solution 37, 6.14.3 G12/AS2 included 38, 6.15 (deleted) 9.41, G12/AS1 9.3.2 17, G12/AS1 2.1.2, Table 1 p. 41, G12/AS1 9.3.2 27, G12/AS1 Table 5 9.43, G12/AS1 9.3.2 23, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 23, G12/AS1 3.6.2 p. 43, G12/AS2 1.1.1 17 G12/AS1 2.1.2 pp. 44-47, 49-50, 64, 27 G12/AS1 Table 5 G12/AS2 2.1.4, 3.1.1, 3.2.1, 40 G12/AS1 7.5.2 3.6.1, 3.6.2, 72.3, Tables 12 G12/AS1 3.7.4 p. 35 G12/AS1 6.11.3 23 G12/AS1 3.7.4 p. 35 G12/AS2 4.2.2, 5.0.1 20 G12/AS1 3.5.2 51 G12/AS2 4.2.2, 5.0.1	o. 43-45 Index	
37, 6.14.3 G12/AS2 included 38, 6.15 (deleted) 40, 7.5.2 17, G12/AS1 2.1.2, Table 1 p. 41, G12/AS1 9.3.2 27, G12/AS1 Table 5 32, G12/AS1 Table 6 21, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 23, G12/AS1 3.7.2 p. 43, G12/AS2 1.1.1 17 G12/AS1 2.1.2 pp. 44-47, 49-50, 64, G12/AS2 1.1, 3.2.1, 3.6.1, 3.6.2, 7.2.3, Tables 5 312/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 23 G12/AS1 3.7.4 p. 35 G12/AS2 1.1.1 23 G12/AS1 3.7.4 p. 35 G12/AS2 1.1.1 23 G12/AS1 3.7.4 p. 35 G12/AS2 1.1.1 20 G12/AS1 3.5.2 p. 41 G12/AS2 4.2.2, 5.0.1	15, VM1 1.0.1	
27, G12/AS1 Table 5 32, G12/AS1 Table 6 21, G12/AS1 3.6.1 p. 41, G12/AS1 9.3.2 23, G12/AS1 3.7.2 p. 43, G12/AS2 1.1.1 17 G12/AS1 2.1.2 pp. 44-47, 49-50, 64, 27 G12/AS1 Table 5 G12/AS2 2.1.4, 3.1.1, 3.2.1, 3.6 (12/AS1 7.5.2 2.1.4, 3.1.1, 3.2.1, 3.6 (12/AS1 7.5.2 2.1.4, 3.1.1, 3.2.1, 3.6 (12/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1.2 and 3 2.3 G12/AS1 3.7.4 2.3 G12/AS1 5.2.3 p. 43 G12/AS2 1.1.1 20 G12/AS1 3.5.2 5.1 G12/AS2 4.2.2, 5.0.1	37, 6.14.3 38, 6.15 (deleted)	
23, G12/AS1 3.7.2 p. 43, G12/AS2 1.1.1 17 G12/AS1 2.1.2 pp. 44-47, 49-50, 64, 27 G12/AS1 7.5.2 G12/AS2 2.1.4, 3.1.1, 3.2.1, 40 G12/AS1 7.5.2 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 23 G12/AS1 5.2.3 23 G12/AS1 7.5.2 p. 35 G12/AS1 6.11.3 24 G12/AS1 5.2.3 p. 31 G12/AS2 1.1.1 20 G12/AS1 3.5.2 51 G12/AS2 4.2.2	27, G12/AS1 Table 5	p. 41, G12/AS1 9.3.2
27 G12/AS1 Table 5 G12/AS2 2.1.4, 3.1.1, 3.2.1, 3.6.1, 3.6.2, 7.2.3, Tables 1, 2 and 3 23 G12/AS1 3.7.4 p. 35 G12/AS1 6.11.3 24 G12/AS1 5.2.3 p. 43 G12/AS2 1.1.1 32 G12/AS1 Table 6 p. 51 G12/AS2 4.2.2, 5.0.1		
24 G12/AS1 5.2.3 p. 43 G12/AS2 1.1.1 32 G12/AS1 Table 6 p. 51 G12/AS2 4.2.2, 5.0.1 20 G12/AS1 3.5.2 51 G12/AS2 4.2.2	27 G12/AS1 Table 5	G12/AS2 2.1.4, 3.1.1, 3.2.1, 3.6.1, 3.6.2, 7.2.3, Tables
51 G12/AS2 4.2.2	24 G12/AS1 5.2.3	p. 43 G12/AS2 1.1.1
		irrent document.

urrent G12 Water Supplies acceptable solutions and verification methods ext to be amended shown in red)	Propos	ed amendme tion method	ents to G12 Wate s (Proposed text	r Supplies : in blue)
		G12: Document His		Alterations
		Amendment 13	Date Effective xx November 2022	Alterations
		Note: Page numbers re	elate to the document at the time of	Amendment and may
	2B)		

s acceptable solutions and

Current G12 Water Supplies - No changes proposed to this page

Proposed G12 Water Supplies - No changes proposed to this page

Clause G12 Wat The mandatory provisions for building wor (NZBC), which comprises the First Schedu	k are contained in the New Zealand Build	•	Clause G12 Wat The mandatory provisions for building wor (NZBC), which comprises the First Schedu	rk are contained
NZBC Clause for Water Supplies is G12. Schedule Building An	nendment Regulations 2001	- I	NZBC Clause for Water Supplies is G12.	nendment Regul
Sch New clause G12 substit	edule uted in First Schedule of regulations		Sch New clause G12 substit	edule
Clause G12–Water Supplies			Clause G12-Water Supplies	
Provisions	Limits on application		Provisions	Limits on a
<i>Objective</i> G12.1 The objective of this provision is			Objective G12.1 The objective of this provision is	
 (a) safeguard people from illness caused by contaminated water: (b) safeguard people from injury caused by hot water system explosion, or from contact with excessively hot water: 			 (a) safeguard people from illness caused by contaminated water: (b) safeguard people from injury caused by hot water system explosion, or from contact with excessively hot water: 	
 (c) safeguard people from loss of amenity arising from- (i) a lack of hot water for personal hygiene; or (ii) water for human consumption, 			 (c) safeguard people from loss of amenity arising from- (i) a lack of hot water for personal hygiene; or (ii) water for human consumption, 	
which is offensive in appearance odour or taste: (d) ensure that <i>people with disabilities</i> are able to carry out normal activities and forcit a within the idium	e Objective G12.1(d) shall apply only to those <i>buildings</i> to which section 47A of	Amend 7 Sep 2010	 which is offensive in appearance odour or taste: (d) ensure that <i>people with disabilities</i> are able to carry out normal activities and foreity entities in the entities of the enti	e Objective G1 those <i>building</i>
and functions within buildings. Functional requirement G12.2 Buildings provided with water outlets, sanitary fixtures or sanitary appliances must have safe and adequate water supplies.	the Act applies.	1 See Note	and functions within buildings. Functional requirement G12.2 Buildings provided with water outlets, sanitary fixtures or sanitary appliances must have safe and adequate water supplies.	the Act applie
Performance G12.3.1 Water intended for human consumption, food preparation, utensil washing or oral hygiene must be potable G12.3.2 A potable <i>water supply system</i> shall be-	Performance G12.3.1 does not apply to <i>backcountry huts</i> .	Amended Oct 2008	Performance G12.3.1 Water intended for human consumption, food preparation, utensil washing or oral hygiene must be potable G12.3.2 A potable water supply system shall be-	Performance backcountry h
 (a) protected from contamination; and (b) installed in a manner which avoids the likelihood of contamination within the system and the <i>water</i> <i>main</i>; and 			 (a) protected from contamination; and (b) installed in a manner which avoids the likelihood of contamination within the system and the <i>water</i> <i>main</i>; and 	
(c) installed using components that will not contaminate the water. G12.3.3 A non-potable water supply system used for personal hygiene shall be installed in a manner that avoids the likelihood of illness or injury being cause by the system.			 (c) installed using components that will not contaminate the water. G12.3.3 A non-potable water supply system used for personal hygiene shall be installed in a manner that avoids the likelihood of illness or injury being cause by the system. 	m
G12.3.4 Water pipes and outlets provided with non-potable water shall be clearly identified.			G12.3.4 Water pipes and outlets provided with non-potable water shall be clearly identified.	1
NOTE: Section 47A is in the Building Act 1991. The equiv.	elect castion in the Ruilding Act 2004 is paction 1		NOTE: Section 47A is in the Building Act 1991. The equiv	relant agation in the
	alent section in the Building Act 2004 is section i			

WATE	R SUPPLIES
ng Code	
Supplies	
tained in the New Zealand Building Building Regulations 1992. The rele	
t Regulations 2001	
First Schedule of ions	
its on application	
etive G12.1(d) shall apply only to <i>buildings</i> to which section 47A of Act applies.	Amend 7 Sep 2010 See Note
ormance G12.3.1 does not apply to country huts.	Amended Oct 2008
	\frown
on in the Building Act 2004 is section 118.	
30 Septer	mber 2010

Proposed G12 Water Supplies - No changes proposed to this page Current G12 Water Supplies - No changes proposed to this page WATER SUPPLIES Clause G12 WATER SUPPLIES **Building Amendment Regulations 2001** Schedule **Building Amendment Regulations 2001** Provisions Limits on application Provisions Limits on application Performance-continued Performance-continued G12.3.5 Sanitary fixtures and sanitary G12.3.5 Sanitary fixtures and sanitary appliances must be provided with hot appliances must be provided with hot water when intended to be used forwater when intended to be used for-(a) utensil washing; and (a) utensil washing; and (b) personal washing, showering or Performance G12.3.5(b) shall apply only (b) personal washing, showering or Performance G12.3.5(b) bathing. to housing, retirement homes and early bathing. to housing, retirement ho childhood centres. childhood centres. **G12.3.6** Where hot water is provided to *sanitary fixtures* and *sanitary appliances*, **G12.3.6** Where hot water is provided to *sanitary fixtures* and *sanitary appliances*, used for personal hygiene, it must be delivered at a temperature that avoids the likelihood of scalding. used for personal hygiene, it must be delivered at a temperature that avoids the likelihood of scalding. G12.3.7 Water supply systems must be G12.3.7 Water supply systems must be installed in a manner thatinstalled in a manner that-(a) pipes water to sanitary fixtures and (a) pipes water to sanitary fixtures and sanitary appliances flow rates that are sanitary appliances flow rates that are adequate for the correct functioning of those *fixtures* and *appliances* under normal conditions; and adequate for the correct functioning of those fixtures and appliances under normal conditions: and (b) avoids the likelihood of leakage; and (b) avoids the likelihood of leakage; and (c) allows reasonable access to (c) allows reasonable access to components likely to need maintenance; and components likely to need maintenance; and (d) allows the system and any backflow prevention devices to be isolated for (d) allows the system and any backflow prevention devices to be isolated for testing and maintenance. testing and maintenance. G12.3.8 Vessels used for producing or G12.3.8 Vessels used for producing or storing hot water must be provided with storing hot water must be provided with safety devices thatsafety devices that-(a) relieve excessive pressure during (a) relieve excessive pressure during both normal and abnormal both normal and abnormal conditions; and conditions; and (b) limit temperatures to avoid the likelihood of flash steam production (b) limit temperatures to avoid the likelihood of flash steam production in the event of rupture. in the event of rupture. **G12.3.9** A *hot water system* must be capable of being controlled to prevent the G12.3.9 A hot water system must be canable of being controlled to prevent the growth of legionella bacteria. growth of legionella bacteria. Performance G12.3.10 applies only to G12.3.10 Water supply taps must be G12.3.10 Water supply taps must be Performance G12.3.10 ar Amend 7 Sep 2010 accessible and usable for people with disabilities. accessible and usable for people with disabilities. those *buildings* to which s the Act applies. those buildings to which section 47A of See Note the Act applies. Clerk of the Executive Council. Clerk of the Execu NOTE: NOTE: Section 47A is in the Building Act 1991. The equivalent section in the Building Act 2004 is section 118. Section 47A is in the Building Act 1991. The equivalent section in the Building A 4 4 30 September 2010 DEPARTMENT OF BUILDING AND HOUSING DEPARTME 30 September 2010

	Clause G12	
Schedule		
1		
) shall apply only ones and early		
pplies only to	I Amend 7	
ection 47A of	Amend 7 Sep 2010 See Note	
tive Council.		
uve Gounen.		
ct 2004 is section 118.		
NT OF BUILDING AN	D HOUSING	

		Page	6.8	Vent pipes	34
Refe	rences	7	6.9	Alternative acceptable solutions	35
Defin	iitions	11		for the installation of open vented storage water heaters	
Vorif	ication Method G12/VM1	15	6.10	Alternative acceptable solutions	35
1.0	Water Supply System	15		for the installation of unvented (valve vented) storage water heaters	-
			6.11	Water heater installation	35
	ptable Solution G12/AS1	17	6.12		36
1.0	Scope	17	6.13	Wet-back water heaters	36
2.0	Materials	17	6.14		37
2.1	Water quality	17	6.15	Solar water heaters	38
2.2	Pipe materials	17	7.0	Installation Methods	38
3.0	Protection of Potable Water	18	7.1	Pipe supports	38
3.1	Drawn water not to be returned	18	7.2	Protection from freezing	38
3.2	Cross connections prohibited	18	7.3	Protection from damage	39
3.3	Cross connection hazard	18	7.4	Installation of uPVC pipes	39
3.4	Backflow protection	19	7.5	Watertightness	40
3.5	Air gap	20	8.0	Usable Facilities for People	40
3.6	Backflow prevention devices	20	0.0	with Disabilities	
3.7	Testing	23	9.0	Equipotential Bonding	40
4.0	Non-potable Supply	23	9.1	General	40
4.1	Protection of non-potable water supplies	23	9.2	Installation of equipotential bonding conductors	41
4.2	Outlet identification	23	9.3	Earth bonding conductors	41
4.3	Pipeline identification	23		-	
5.0	Water Supply	24		ptable Solution G12/AS2	43
5.1	Water tanks	24	1.0	Scope	43
5.2	Water tank installation	24	1.1	Structural support limitations	43
5.3	Water pipe size	24	1.2	Exclusions	44
5.4	Maintenance facilities	26	2.0	Materials	44
6.0	Hot Water Supply System	27	2.1	Material selection	44
6.1	Water heaters	27	3.0	Solar Water Heater Requirements	48
6.2	Water supply to storage water heaters	27	3.1	Solar water heaters and components	48
6.3	Operating devices	28	3.2	Solar controller	48
6.4	Safety devices	32	3.3	Sizing of systems	40
6.5	Temperature control devices	32	3.4	Operating and safety devices	48
6.6	Relief valves	32	3.4 3.5	Protection from Legionella bacteria	48 48
6.7	Relief valve drains	33	3.6	Protection from frosts	40 49

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Contents

Contents G12

	Pa	age	6.7		33B 34
Refer	ences	7	6.8	Vent pipes	
Defin	itions	11	6.9	Another acceptable solution for the installation of open vented	35
	cation Method G12/VM1 r Supply Sizing	15	6.10	storage water heaters Another acceptable solution	35
1.0	Water Supply Pipework Sizing	15		for the installation of unvented (valve vented) storage water heaters	5
Accep	ptable Solution G12/AS1	17	6.11	Water heater installation	35
1.0	Scope	17	6.12	Hot water pipe sizes	36
2.0	Materials	17	6.13	Wet-back water heaters	36
2.1	Water quality	17	6.14	Safe water temperatures	37
2.2	Pipe materials	17			
3.0	Protection of Potable Water	18	7.0	Installation Methods	39
3.1	Drawn water not to be returned	18	7.1	Pipe supports	39
3.2	Cross connections prohibited	18	7.2	Protection from freezing	39
3.3	Cross connection hazard	18	7.3	Unintentional heating	39
3.4	Backflow protection	19	7.4	Protection from damage	39
3.5	Air gap	20	7.5	Installation of pipework systems	40
8.6	Backflow prevention devices	20	8.0	Taps for People with Disabilities	41
8.7	Testing	23	9.0	Equipotential Bonding	41
.0	Non-potable Supply	23	9.1	General	41
.1	Protection of non-potable water supplies	23	9.2	Installation of equipotential bonding conductors	42
1.2	Outlet identification	23	9.3	Earth bonding conductors	42
.3	Pipeline identification	23	Acce	ptable Solution G12/AS2	43
. 0	Water Supply	24	1.0	Scope	43
5.1	Water tanks	24	1.1	Structural support limitations	43
5.2	Water tank installation	24	1.2	Exclusions	44
5.3	Water pressure	24	2.0	Materials	44 44
5.4	Water pipe size	24	2.1	Material selection	44
5.5	Maintenance facilities	26	2.1 3.0	Solar Water Heater	44 48
6.0	Hot Water Supply System	27	5.0	Requirements	-10
6.1	Water heaters	27	3.1	Solar water heaters and	48
6.2	Water supply to storage water heaters	27	3.2	components Solar controller	48
5.3	Operating devices	28	3.3	Sizing of systems	48
5.4	Safety devices	33	3.4	Operating and safety devices	40
5.5	Temperature control devices	33	3.5	Protection from Legionella bacteria	40
	Relief valves and expansion vessels		3.6	Protection from frosts	40 49

WATER SUPPLIES

WATER SUPPL	IES		Acceptable Solut	tion G12/AS1	- 1	WAT	ER SUPPLIES	
		Page			- 8			Page
4.0 Locatio Heaters	n of Solar Water	50			- 8	4.0	Location of Solar Water Heaters	50
4.1 Location	ı	50				4.1	Location	50
4.2 Solar or	ientation and inclination	50				4.2	Solar orientation and inclination	50
5.0 Installa Heaters	tion of Solar Water	51			- 8	5.0	Installation of Solar Water Heaters	51
5.1 Wetbac	k water heaters	51				5.1	Wetback water heaters	51
5.2 Weathe	rtightness	52				5.2	Weathertightness	52
5.3 Pipe ins	tallation	55				5.3	Pipe installation	55
5.4 Pipe ins	ulation	55				5.4	Pipe insulation	55
6.0 Structu Water H	ral Support for Solar leaters	56				6.0	Structural Support for Solar Water Heaters	56
6.1 Scope		56				6.1	Scope	56
6.2 General	requirements	56				6.2	General requirements	56
	xed solar collectors to the roof	56				6.3	Direct fixed solar collectors parallel to the roof	56
	d solar collectors to the roof	59				6.4	Elevated solar collectors parallel to the roof	59
6.5 Collecto	r support rails	61				6.5	Collector support rails	61
	ng collectors at a different the roof cladding	t 62				6.6	Mounting collectors at a differer pitch to the roof cladding	nt 62
7.0 Mainter	nance and Durability	64				7.0	Maintenance and Durability	64
7.1 Mainter	ance	64				7.1	Maintenance	64
7.2 Durabili	ty	64				7.2	Durability	64
Index		65				Acc	eptable Solution G12/A3	
IIIWVA						1.0	AS/NZS 3500.1 and	
							AS/NZS 3500.4	ХХ
						Inde	ex	65
\						6		

s acceptable solutions and

Acceptable Solution G12/AS1

NNOVATION AND EMPLOYMENT

.....

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

	Refere	nces			
Amend 8 Oct 2011	For the purposes of New Zealand Building Code (NZBC) compliance, the Standards and documents referenced in these Verification Methods and Acceptable Solutions (primary reference documents) must be the editions, along with their specific amendments, listed below. Where these primary reference documents refer to other Standards or documents (secondary reference documents), which in turn may also refer to other Standards or documents, and so on (lower-order reference documents), then the version in effect at the date of publication of these Verification Methods and Acceptable Solutions must be used.			Amend 9 Feb 2014 Amend 9 Feb 2014	
	Standards New 2	Zealand	Where quoted		
I					
Amend 8 Oct 2011	NZS/BS 1387: 1985	Specification for screwed and socketed steel tubes and tubulars and for plain end steel tubes suitable for welding or screwing to BS 21 pipe threads <i>Amend: 1</i>	AS1 Table 1	- 1	
	NZS 3501: 1976	Specification for copper tubes for water, gas, and sanitation <i>Amends: 1, 2, 3</i>	AS1 Table 1		
Amend 8 Oct 2011	NZS 3604: 2011	Timber framed buildings	AS2 1.1.1	_	
	NZS 3604: 1999	Timber framed buildings	AS2 1.1.1		
	NZS 3604: 1990	Timber framed buildings	AS2 1.1.1		
	NZS 4203:1992	Code of Practice for general structural design and design loadings for buildings	AS2 1.1.1		
	NZS 4602: 1988	Low pressure copper thermal storage electric water heaters <i>Amend: 1</i>	AS1 Table 5		
	NZS 4603: 1985	Installation of low pressure thermal storage electric water heaters with copper cylinders (open-vented systems) <i>Amend:</i> 1	AS1 6.9.1, <mark>6.11.5</mark>	- 1	
	NZS 4606: Part 1: 1989	Storage water heaters General requirements <i>Amends: 1, 2, 3</i>	AS1 Table 5		
	Part 2: 1989	Specific requirements for water heaters with single shells	AS1 Table 5		
	Part 3: 1992	Amend: A Specific requirements for water heaters with composite shells Amend: A	AS1 Table 5		
	NZS 4607: 1989	Installation of thermal storage electric water heaters: valve-vented systems	AS1 6.10.1		
	NZS 4608: 1992	Control valves for hot water systems	AS1 Table 6		
	NZS 4613: 1986	Domestic solar water heaters	AS2 7.2.3	Amend 9 Feb 2014	
	MINISTRY OF DU	SINESS, INNOVATION AND EMPLOYMENT	14 February 2014	$\left(\begin{array}{c}7\end{array}\right)$	
	WINTSTIT OF BUS	SINESS, INNOVATION AND ENTLUTIVENT	14 1 CDIUAIY 2014	\ _	

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

	References G12/VM	1 & AS1/AS2			
	References				
Amend 8 Oct 2011	documents reference reference docume Where these prim reference docume (lower-order reference	of New Zealand Building Code (NZBC) cornced in these Verification Methods and Aunts) must be the editions, along with their ary reference documents refer to other Stents), which in turn may also refer to other documents), then the version in effer ds and Acceptable Solutions must be use			
1	Standards New 2	Zealand			
Amend 8 Oct 2011					
Amend 7 Sep 2010					
	NZS 3501: 1976	Specification for copper tubes for water, and sanitation <i>Amends: 1, 2, 3</i>			
Amend 8 Oct 2011	NZS 3604: 2011	Timber framed buildings			
	NZS 3604: 1999	Timber framed buildings			
	NZS 3604: 1990	Timber framed buildings			
	NZS 4203:1992	Code of Practice for general structural d and design loadings for buildings			
	NZS 4602: 1988	Low pressure copper thermal storage electric water heaters Amend: 1			
	NZS 4603: 1985	Installation of low pressure thermal stor- electric water heaters with copper cylind (open-vented systems) <i>Amend: 1</i>			
	NZS 4606: Part 1: 1989	Storage water heaters General requirements Amends: 1, 2, 3			
	Part 2: 1989	Specific requirements for water heaters single shells Amend: A			
	Part 3: 1992	Specific requirements for water heaters composite shells <i>Amend: A</i>			
	NZS 4607: 1989	Installation of thermal storage electric w heaters: valve-vented systems			
	NZS 4608: 1992	Control valves for hot water systems			
	NZS 4613: 1986	Domestic solar water heaters			

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

	WATER SUPPLIES	s
Standards or do ner Standards or		Amend 9 Feb 2014
sed.	Where quoted	Amend 9 Feb 2014
er, gas,	AS1 Table 1	<u> </u>
	AS2 1.1.1 AS2 1.1.1 AS2 1.1.1	
design	AS2 1.1.1	
	AS1 Table 5	_
orage inders	AS1 6.9.1, 6.13.1	1
	AS1 Table 5	_
rs with	AS1 Table 5	
rs with	AS1 Table 5	_
water	AS1 6.10.1	_
	AS1 Table 6 AS2 7.2.3	Amend 9 Feb 2014
IT.	xx November 2022	7

Proposed amendment	ts to G12 Water Supplie
verification methods (Proposed text in blue)

	WATER SUPPLIES	F	References G12/VM1 & A
Amend 9 Feb 2014	NZS 4614: 1986	Installation of domestic solar hot water heating systems Amend: 1 (1986) Erratum	Where quoted AS2 4.2.2
	NZS 4617: 1989	Tempering (3-port mixing) valves	AS1 6.14.2 b)
	NZS 5807: 1980	Code of practice for industrial identification by	
	Part 2: 1980	colour, wording or other coding Identification of contents of piping, conduit and ducts Amends: 1, 2	AS1 4.3.1
1	NZS 6214: 1988	Thermostats and thermal cutouts for domestic thermal storage electric water heaters (alternating current only)	AS1 6.5.1
Amend 7 Sep 2010			
Amend 8 Oct 2011			
Amend 7 ep 2010			
	NZS 7601: 1978	Specification for polyethylene pipe (Type 3) for cold water services	AS1 Table 1
	NZS 7602: 1977	Specification for polyethylene pipe (Type 5) for cold water services Amend: 1	AS1 Table 1
	NZS 7610: 1991	Specification for blue polyethylene pipes up to nominal size 63 for below ground use for potable water	AS1 Table 1
Amend 7		Amends: 1, 2, 3	
ep 2010	British Standards	Institution	
	BS EN 1490: 2000	Building valves. Combined temperature and pressure relief valves. Tests and requirements.	AS1 Table 6
	BS EN 1491: 2000	Building valves. Expansion valves. Tests and requirements	AS1 Table 6
	BS EN 1567: 1999	Building valves. Water pressure reducing valves and combination water reducing valves. Requirements and tests.	AS1 Table 6
	BS 6920	Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water intended to the suitable of the suit	
	Part 1: 2000 Spe Part 2: 2000 Me [.]		AS1 2.1.2 AS1 2.1.2
Amend 7 ep 2010		h temperature tests	AST 2.1.2 AST 2.1.2
)		
	14 February 2014	4 MINISTRY OF BUSINESS, INN	OVATION AND EMPLO

	WATER SUPPLIES	
	WATER SUFFLIES	
Amend 9 Feb 2014	NZS 4614: 1986	Installation of domestic solar hot water heating systems Amend: 1 (1986) Erratum
	NZS 4617: 1989	Tempering (3-port mixing) valves
	NZS 6214: 1988	Thermostats and thermal cutouts for domestic thermal storage electric water heaters (alternating current only)
Amends 7 and 8		
Amend 7 Sep 2010		
	British Standards	Institution
	BS EN 1111: 2017	Sanitary tapware. Thermostatic mixing valves (PN-10). General technical specification
	BS EN 1287: 2017	Sanitary tapware. Low pressure thermostatic mixing valves. General technical specification
	BS EN 1490: 2000	Building valves. Combined temperature and pressure relief valves. Tests and requirements.
		Building valves. Expansion valves. Tests and requirements
	BS EN 1567: 1999	Building valves. Water pressure reducing valves and combination water reducing valves. Requirements and tests.
	BS 6920	Suitability of non-metallic products for use in contact with water intended for human consum with regard to their effect on the quality of the v
Amend 7	Part 1: 2014 Part 2: 2014	Specification Methods of tests
Sep 2010	Part 3: 2000 BS EN 13831: 2007	High temperature tests 7 Closed expansion vessels with built-in diaphrag for installation in water
	Standards Austra	
	AS 1308: 1987	Electric water heaters – Thermostats and thermal cut-outs <i>Amend:</i> 1
Amend 7 Sep 2010	AS 1357: Part 1: 2019	Valves primarily for use in heated water system Protection valves
	Part 2: 2005	Control valves Amend: 1, 2
8	xx November 202	22 MINISTRY OF BUSINESS, I

es acceptable solutions and

	Where quoted AS2 4.2.2		
	AS1 Table 8		
	AS1 6.5.1		
		I	
	AS1 Table 8		
	AS1 Table 8		
	AS1 Table 6		
	AS1 Table 6		
	AS1 Table 6		
otion vater			
	AS1 2.1.2 AS1 2.1.2		
	AS1 2.1.2		
Im	AS1 6.6.7 a)		
	AS1 6.5.1		
S	AS1 Table 6		
	AS1 Table 6		

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

			Where quoted
	Standards Aust	ralia	
	AS 1308: 1987	Electric water heaters – Thermostats and thermal cut-outs <i>Amend: 1</i>	AS1 6.5.1
	AS 1357: Part 1: <mark>2009</mark>	Water valves for use with unvented water heaters Protection valves	AS1 Table 6
	Part 2: 2005	Control valves Amend: 1, 2	AST 6.14.2 b), Table 6
Amend 7			
Sep 2010	AS 2845.	Water supply – Mechanical backflow prevention devices	
nend 8 t 2011	Part 3: 1993	Field testing and maintenance Amend: 1	AS1 3.6.1 b), <u>3.7.2</u>
Amend 7 Sep 2010	Australian/New	Zealand Standards	
	AS/NZS 1170: Part 0: 2002	Structural Design Actions General principles Amend: 1, 2 and 4	AS2 1.1.1
I	Part 1: 2002	Permanent, imposed and other actions Amend: 1, 2	AS2 1.1.1
end 10	Part 2: 2011	Wind Actions Amend: 1, 2 and 3	AS2 1.1.1
2017	Part 3: 2003	Snow and ice actions Amend: 1	AS2 1.1.1
Amend 8 Oct 2011	NZS 1170: Part 5: 2004	Earthquake design actions – New Zealand	AS2 1.1.1
	_	26 PVC pipes and fittings for pressure applications	AS1 Table 1
Amend 7 iep 2010	AS/NZS 2032: 20	06 Installation of PVC pipe systems Amend: 1	AS1 7.4.1, 7.5.2
1	AS/NZS 2642: Part 1: 2007	Polybutylene pipe systems Polybutylene (PB) pipe extrusion compounds	AS1 Table 1
Amend 8 Oct 2011	Part 2: 2008	Polybutylene (PB) pipe for hot and cold water applications	AS1 Table 1
Amend 8 Oct 2011	Part 3: 2008	Mechanical jointing fittings for use with polybutylene (PB) pipes for hot and cold water applications <i>Amend: 1</i>	AS1 Table 1

	AS 1432: 2004	Copper tubes for plumbing, gasfitting a applications
	AS 2345: 2006	Dezincification resistance of copper allo
	AS 3498: 2020	Safety and public health requirements a products - Water heaters and hot-water
	AS 3688: 2016	Water supply and gas systems - Metall end connectors
	AS 4032:	Water supply - Valves for the control of water supply temperatures
	Part 1: 2005	Thermostatic mixing valves - Materials performance requirements
	Part 2: 2005	Tempering valves and end-of-line temperature devices
	Part 3: 2004	Amend: 1, 2 Requirements for field testing, mainten replacement of thermostatic mixing val tempering valves and end of line temper control devices
	Part 4: 2014	Thermostatically controlled taps for the heated water supply temperatures
	AS 4809:2017	Copper pipe and fittings - Installation ar commissioning
1	AS 5200: Part 053: 2008	Plumbing and drainage products Stainless steel pipes and tubes for pres applications
Amend 7 Sep 2010	Australian/New Z	ealand Standards
	-	
	AS/NZS 1170: Part 0: 2002	Structural Design Actions General principles Amend: 1, 2 and 4
	Part 1: 2002	Permanent, imposed and other actions <i>Amend: 1, 2</i>
	Part 2: 2011	Wind Actions Amend: 1, 2 and 3
Amend 10 Jan 20170	Part 3: 2003	Snow and ice actions Amend: 1
	NZS 1170:	
Amend 8 Oct 2011	Part 5: 2004	Earthquake design actions - New Zeala
	AS/NZS 1477: 2017	PVC pipes and fittings for pressure app
Amend 7 Sep 2010	AS/NZS 2032: 200	3 Installation of PVC pipe systems Amend: 1
	AS/NZS 2033: 2008	3 Installation of polyethylene pipe system Amend: 1, 2
		NESS, INNOVATION AND EMPLOYMEN

WATER SUPPLIES Where quoted and drainage AS1 Table 1 AS1 2.2.3 oys AS1 Table 8 for plumbing storage tanks llic fittings and AS1 Table 1 f heated design and AS1 Table 8 AS1 Table 8 erature AS1 Table 8 nance or Comment lves, erature e control of AS1 Table 8 AS1 7.5.3 nd AS1 Table 1 ssure AS2 1.1.1 AS2 1.1.1 AS2 1.1.1 AS2 1.1.1 AS2 1.1.1 land olications AS1 Table 1 AS1 7.5.1, 7.6.2 AS1 7.5.2 ms 9 xx November 2022

Proposed amendment	ts to G12 Water Supplie
verification methods (Proposed text in blue)

		References G12/VM1 & AS1/AS2
Amend 9 eb 2014		Where quoted
AS/NZS 27	12: 2007 Solar and heat pump water heaters – Design and construction Amend: 1, 2 and 3	AS2 3.1.1, 3.6.1
nend 10 an 2017 AS/NZS 28 wmend 8 bit 2011 Part 1: 20 nend 10 an 2017		AS1 3.6.2
Amends	335.2.35: 2013 Household and similar electrical appliance: Safety – Part 2.35 Particular requirements for instantaneous water heaters	s. AS1 lable 5
7 & 10 7 & 10 10 & 12 Part 3 10 & 12 Part 1 Part 4: 2	018 Water services	VM1 1.0.1 a), AS1 3.5.2 Comment VM1 1.0.1 b AS2 1.1.1 c), 4.2.2 Comment, 5.0.1
AS/NZS 40	20 2005 Testing of products for use in contact with drinking water	AS1 2.1.2
AS/NZS 41	29:2008 Fittings for polyethylene (PE) pipes for pressure applications	AS1 Table 1
AS/NZS 41	30:2009 Polyethylene (PE) pipes for pressure applications Amend: 1	AS1 Table 1
AS/NZS 46 Part 2: 2) AS2 3.1.2
mend 7 19 2010	00.1 2005 Electric cables – Polymeric insulated – For working voltages up to and including 0.6/1 (1.2) kV Amend: 1	AS1 9.3.2
Mend 8 ct 2011	00.2 2006 Electric cables – Polymeric insulated Part 2: For working voltages up to and including 450/750 v.	AS1 9.3.2
	and Regulations	
Master Plu	ations 1993 umbers, Gasfitters and Drainlayers NZ Inc · New Zealand	AS1 Table 5
mend 8 ct 2011	w testing standard 2011 Field testing of backflow prevention devices and verification of air gaps	AS1 3.6.1 b), 3.7.2
) 27 June	2019 MINISTRY OF BUSINESS, IN	NOVATION AND EMPLOYMENT

WATER SU	UPPLIES	
AS/NZS 24	492: 2007	7 Cross-linked polyethylene (PE-X) pipes for press applications
AS/NZS 25		Mechanical jointing fittings for use with crosslink polyethylene (PE-X) for pressure applications
Part 1: 2	2011	Plastics piping systems for hot and cold water installations – Crosslinked polyethylene (PE-X) - General
Part 2: 2	2011	Plastics piping systems for hot and cold water installations – Crosslinked polyethylene (PE-X) – Fittings Amend 1
Part 3: 2	2011	Plastics piping systems for hot and cold water installations – Crosslinked polyethylene (PE-X) - Fitness for purpose of the system
Part 4: 2	2011	Plastics piping systems for hot and cold water installations – Crosslinked polyethylene (PE-X) – Guidance for the assessment of conformity
AS/NZS 26	642:	Polybutylene pipe systems
Part 1: 2		Polybutylene (PB) pipe extrusion compounds
Amend 8 Oct 2011 Part 2: 2	2008	Amend 1 Polybutylene (PB) pipe for hot and cold water applications
Amend 8 Part 3: 2 Oct 2011	2008	Mechanical jointing fittings for use with polybutylene (PB) pipes for hot and cold water applications <i>Amend: 1</i>
Amend 9 Feb 2014 Amend 10 Jan 2017	712: 2007	Solar and heat pump water heaters – Design and construction Amend: 1, 2 and 3
Amend 10 Jan 2017 AS/NZS 28 Amend 8 Oct 2011 Part 1: 2 Amend 10		Water supply – Backflow prevention devices Materials, design and performance requirements <i>Amend:</i> 1
Jan 2017 Part 3: 2	2020	Field testing and maintenance of testable device:
Amends 10 & 12 Amends		Plumbing and drainage Water services
9&11		
Amends 9,10,11,12 Part 4: 2	2021	Heated water services
10 xx Nove	mber 202	2 MINISTRY OF BUSINESS, IN
_		

es acceptable solutions and

Referen	ces G12/VM1 & AS1/AS2	
sure		
nked		
	AS1 Table 1	
-	AS1 Table 1	
	AS1 Table 1	
nd	AS2 3.1.1, 3.6.1	
ts	AS1 3.6.2	
es	AS1 3.6.1 d), 3.7.2	
	VM1 1.0.1 Comment AS1 3.5.2 Comment, 4.3.1, 5.1.2, 5.2.2 Comment, 6.14.4 Comment AS3 1.0.1, 1.0.3 VM1 1.0.1 Comment, AS1 6.6.8 Comment 6.14.3 Comment, Table 8	Amend 11 Nov 2018
	AS2 1.1.1 c), 4.2.2 Comment, 5.0.1 AS3 1.0.1, 1.0.4	Amend 12 Jun 2019

INNOVATION AND EMPLOYMENT

Current G12 Water Supplies acceptable solutions and verification methods
(Text to be amended shown in red)Proposed amendments to G12 Water Supplies acceptable solutions and
verification methods (Proposed text in blue)

Acceptable Solution G12/AS1 AS/NZS 3879:2011 Solvent cements and priming fluids for and PVC-M) and ABS and ASA pipes ar AS/NZS 4020: 2018 Testing of products for use in contact drinking water AS/NZS 4129: 2020 Fittings for polyethylene (PE) pipes for pressure applications Amend 10 Jan 2017 Amend 7 Sep 2010 AS/NZS 4130: 2018 Polyethylene (PE) pipes for pressure ap Amend: 1 AS/NZS 4692: Electric water heaters Part 2: 2005 Minimum Energy Performance Standar requirements and energy labelling AS/NZS 5000.1 2005 Electric cables - Polymeric insulated For working voltages up to and includir 0.6/1 (1.2) kV Amend 7 Sep 2010 Amend: 1 AS/NZS 5000.2 2006 Electric cables – Polymeric insulated For working voltages up to and includir Amend 8 Oct 2011 450/750 v. Amend 9 Feb 2014 | AS/NZS 60335.2.35: 2013 Household and similar electrical Safety – Part 2.35 Particular requiremen Amends 7 and 10 instantaneous water heaters **New Zealand Legislation** Water Services Act 2021 **New Zealand Regulations** Gas (Safety and Measurement) Regulations 2010 Master Plumbers, Gasfitters and Drainlayers NZ Inc and Water New Zealand NZ Backflow testing standard 2019 Field testing of backflow prevention de Amend 8 Oct 2011 verification of air gaps **Chartered Institute of Plumbing and Heating Engineer** Plumbing Engineering Services Design Guide, Hornchurch National Sanitation Foundation / American National St Institute /Canadian Standards Association NSF/ANSI/CAN 372: 2020 Drinking Water System Compor Lead Content

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

	WATER SUPPLIES
or PVC (PVC-U and fittings	Where quoted AS1 Table 1
t with pr	AS1 2.1.2 AS1 Table 1
applications	AS1 Table 1
ards (MEPS)	AS2 3.1.2
1 – ing	AS1 9.3.2
d Part 2: ing	AS1 9.3.2
I appliances. ents for	AS1 Table 5
	Definitions G12/VM1 & AS1/AS2/AS3
	AS1 Table 5
evices and	AS1 3.6.1 d), 3.7.2
ring 1 2002 Standards	VM1 1.0.1
onents	AS1 2.1.3
NT	xx November 2022

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue)

10B

of the Building Code.

outlet discharges.

prevents backflow

which contributes to the health, physical

building's users but which is not associated

contaminants into the water supply system.

independence, and well being of the

Backflow The unplanned reversal of flow of

See back-siphonage and back-pressure.

Backflow prevention device A device that

Back-pressure A backflow condition caused

by the downstream pressure becoming

Back-siphonage A backflow condition caused

Building has the meaning ascribed to it by

sections 8 and 9 of the Building Act 2004.

Check valve A valve that permits flow in one

part of a backflow prevention device.

Cladding The exterior weather-resistant

Includes any supporting substrate and, if applicable,

Contaminant includes any substance

substances, energy, or heat

(including gases, liquids, solids, and

micro-organisms) or energy (excluding

noise) or heat, that either by itself or in

combination with the same, similar, or other

surface of a building.

COMMENT:

surface treatment

direction but prevents a return flow and is

by the supply pressure becoming less than

greater than the supply pressure.

the downstream pressure.

with disease or a specific illness.

water or mixtures of water and

Definitions G12/VM1 & AS1/AS2 WATER SUPPLIES Definitions This is an abbreviated list of definitions for words or terms particularly relevent to these Verification Methods and Acceptable Solutions. The definitions for any other italicised words may Amend 9 Feb 2014 be found in the New Zealand Building Code Handbook. Adequate Adequate to achieve the objectives a) When discharged into water, changes or is likely to change the physical chemical or biological condition of water, or Air gap The vertical distance through air between the lowest point of the water b) When discharged onto or into land or supply outlet and the *flood level rim* of the into air, changes or is likely to change equipment or the *fixture* into which the the physical, chemical, or biological condition of the land or air onto or into which it is discharged Amenity means an attribute of a *building*

This is the meaning ascribed to it by the Resource Management Act 1991

Cross connection Any actual or potential connection between a *potable water* supply and a source of contamination.

Diameter (or bore) The nominal internal diameter.

EPDM (Ethylene Propylene Diene Monomer) A thermosetting synthetic rubber used as a resilient part of a sealing washer, or as a roof membrane.

Fixture An article intended to remain permanently attached to and form part of a building

Flashing A component, formed from a rigid or flexible waterproof material, that drains or deflects water back outside the cladding system.

Flood level rim The top edge at which water can overflow from equipment or a fixture.

Framing Timber members to which *lining*, cladding, flooring, or decking is attached; or which are depended upon for supporting the structure, or for resisting forces applied to it

Free outlet (push through) In the context of storage water heaters means a water heater with a tap on the cold water inlet so designed that the hot water is discharged through an open outlet.

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

14 February 2014

11

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Definitions G12/VM1 & AS1/AS2

Definitions

This is an abbreviated list of definitions for words or terms particularly relevent to these Verification Methods and Acceptable Solutions. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Adequate Adequate to achieve the objectives of the Building Code. substances energy or heat Air gap The vertical distance through air a) When discharged into water, changes or between the lowest point of the water is likely to change the physical, chemical, supply outlet and the *flood level rim* of the or biological condition of water, or equipment or the *fixture* into which the b) When discharged onto or into land or outlet discharges into air, changes or is likely to change Amenity means an attribute of a *building* the physical, chemical, or biological which contributes to the health, physical condition of the land or air onto or into independence and well being of the which it is discharged building's users but which is not associated This is the meaning ascribed to it by the with disease or a specific illness. Resource Management Act 1991 Backflow The unplanned reversal of flow of Cross connection Any actual or potential water or mixtures of water and connection between a *potable water* supply contaminants into the water supply system. and a source of contamination. See back-siphonage and back-pressure. Diameter (or bore) The nominal internal Backflow prevention device A device that diameter prevents backflow Drinking water standards means the Back-pressure A backflow condition caused standards issued or adopted under section by the downstream pressure becoming 47 of the Water Services Act 2021. greater than the supply pressure. **EPDM** (Ethylene Propylene Diene Monomer) Back-siphonage A backflow condition caused A thermosetting synthetic rubber used as a by the supply pressure becoming less than resilient part of a sealing washer, or as a the downstream pressure. roof membrane. **Building** has the meaning ascribed to it by Fixture An article intended to remain sections 8 and 9 of the Building Act 2004. permanently attached to and form part Check valve A valve that permits flow in one of a building. direction but prevents a return flow and is Flashing A component, formed from a rigid part of a backflow prevention device. or flexible waterproof material, that drains **Cladding** The exterior weather-resistant or deflects water back outside the surface of a building cladding system Flood level rim The top edge at which water COMMENT: can overflow from equipment or a fixture. Includes any supporting substrate and, if applicable, surface treatment Framing Timber members to which lining, **Containment backflow protection** *Backflow* cladding, flooring, or decking is attached: protection installed adjacent to the *point* or which are depended upon for supporting the structure, or for resisting forces applied of supply to protect a water main from any potential contamination risk posed by to it backflow from a premises. Free outlet (push through) In the context Contaminant includes any substance of storage water heaters means a water (including gases, liquids, solids, and heater with a tap on the cold water inlet micro-organisms) or energy (excluding

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

noise) or heat, that either by itself or in

WATER SUPPLIES

Amend 9 Feb 2014

combination with the same, similar, or other

so designed that the hot water is discharged through an open outlet.

xx November 2022

WATER SUPPLIES

Household unit

a) means any building or group of buildings, or part of a building or group of buildings, that is:

i) used, or intended to be used, only or

mainly for residential purposes; and ii) occupied, or intended to be occupied, exclusively as the home or residence of not more than one household; but

b) does not include a hostel, boarding house or other specialised accommodation

Masonry tiles Clay or concrete tile roof cladding

Membrane A non-metallic material, usually synthetic, used as a fully supported roof cladding, deck surface or, in conjunction with other *claddings*, as gutters or *flashings*.

Network utility operator means a person who-

a) undertakes or proposes to undertake the distribution or transmission by pipeline of natural or manufactured gas, petroleum, biofuel, or geothermal energy; or

b) operates or proposes to operate a network for the purpose of-

Amend 8 Oct 2011

- i) telecommunication as defined in section 5 of the Telecommunications Act 2001; or
- ii) radiocommunications as defined in section 2(1) of the Radiocommunications Act 1989; or
- c) is an electricity operator or electricity distributor as defined in section 2 of the Electricity Act 1992 for the purpose of line function services as defined in that section: or
- d) undertakes or proposes to undertake the distribution of water for supply (including irrigation); or
- e) undertakes or proposes to undertake a drainage or sewerage system.

Non-return valve A valve that permits flow in one direction but prevents a return flow and is part of a hot or cold water system.

heater incorporating a *vent pipe* which is permanently open to the atmosphere. Potable (and potable water) Water that is

Open vented storage water heater A water

Definitions G12/VM1 & AS1/AS2

suitable for human consumption. Purlin A horizontal member laid to span across rafters or trusses, and to which the

- roof *cladding* is attached. Rafter A framing timber, normally parallel to the slope of the roof, providing support for sarking, purlins or roof cladding.
- Sanitary appliance An appliance which is intended to be used for sanitation, but which is not a sanitary fixture. Included are machines for washing dishes and clothes.

Sanitary fixture Any fixture which is intended to be used for sanitation

Sanitation The term used to describe the activities of washing and/or excretion carried out in a manner or condition such that the effect on health is minimised, with regard to dirt and infection

Specific design Design and detailing of a proposed *building* or parts of a *building*. demonstrating compliance with the building code, that shall be provided to the building consent authority for assessment and approval as part of the building consent process.

Buildings, or parts of buildings, requiring specific design are beyond the scope of this Acceptable Solution

Storage water heater A water tank with an integral water heater for the storage of hot water

Toxic environment An environment that contains contaminants that can contaminate the water supply in concentrations greater than those included in the New Zealand Drinking Water Standard 1995.

Valve vented storage water heater (Also known as an unvented storage water heater.) A storage water heater in which the required venting to the atmosphere is controlled by a valve

10 October 2011

12

DEPARTMENT OF BUILDING AND HOUSING

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

WATER SUPPLIES

Household unit

a) means any building or group of buildings, or part of a building or group of buildings. that is:

i) used, or intended to be used, only or mainly for residential purposes; and

ii) occupied, or intended to be occupied. exclusively as the home or residence of not more than one household; but

b) does not include a hostel, boarding house or other specialised accommodation.

Masonry tiles Clay or concrete tile roof cladding.

Membrane A non-metallic material, usually synthetic, used as a fully supported roof cladding, deck surface or, in conjunction with other claddings, as gutters or flashings.

Network utility operator means a person who-

- a) undertakes or proposes to undertake the distribution or transmission by pipeline of natural or manufactured gas, petroleum, biofuel, or geothermal energy; or
- b) operates or proposes to operate a network for the purpose of-
- i) telecommunication as defined in section 5 of the Telecommunications Act 2001: or
- ii) radiocommunications as defined in section 2(1) of the Radiocommunications Act 1989; or
- c) is an electricity operator or electricity distributor as defined in section 2 of the Electricity Act 1992 for the purpose of line function services as defined in that section: or
- d) undertakes or proposes to undertake the distribution of water for supply (including irrigation); or
- e) undertakes or proposes to undertake a drainage or sewerage system.
- Non-return valve A valve that permits flow in one direction but prevents a return flow and is part of a hot or cold water system.

xx November 2022

Point of supply The toby, reservoir float valve, or other final point to which a building water supply system supplied from a water main connects

Potable water means water that-(a) is safe to drink; and (b) complies with the *drinking water* standards

COMMENT:

Purlin A horizontal member laid to span across rafters or trusses, and to which the roof *cladding* is attached.

Specific design Design and detailing of a proposed building or parts of a building. demonstrating compliance with the building code, that shall be provided to the building consent authority for assessment and approval as part of the *building consent* process.

- hot water.

12

Amend 8 Oct 2011

Definitions G12/VM1 & AS1/AS2

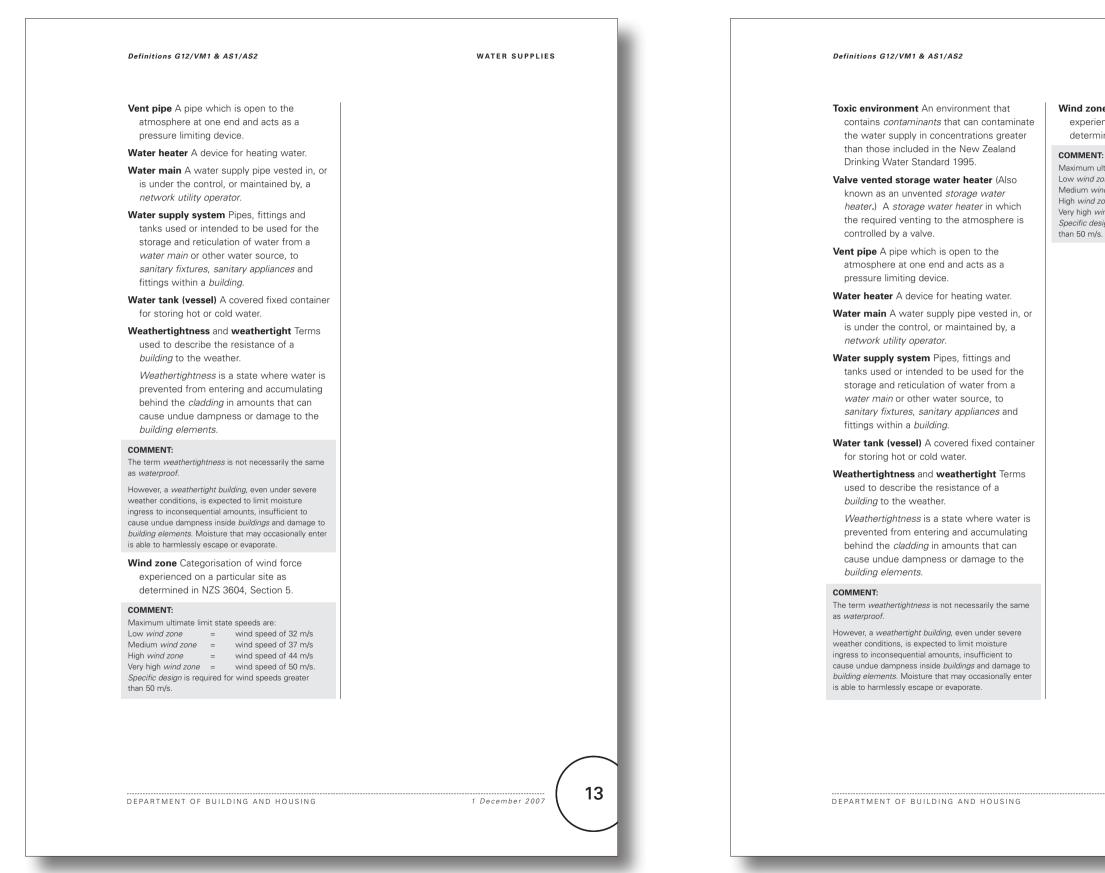
Open vented storage water heater A water *heater* incorporating a *vent pipe* which is permanently open to the atmosphere.

Potable water is also known as drinking water.

Rafter A *framing* timber, normally parallel to the slope of the roof, providing support for sarking, purlins or roof cladding.

Sanitary appliance An appliance which is intended to be used for *sanitation*, but which is not a sanitary fixture. Included are machines for washing dishes and clothes.

Sanitary fixture Any fixture which is intended to be used for sanitation.


Sanitation The term used to describe the activities of washing and/or excretion carried out in a manner or condition such that the effect on health is minimised, with regard to dirt and infection.

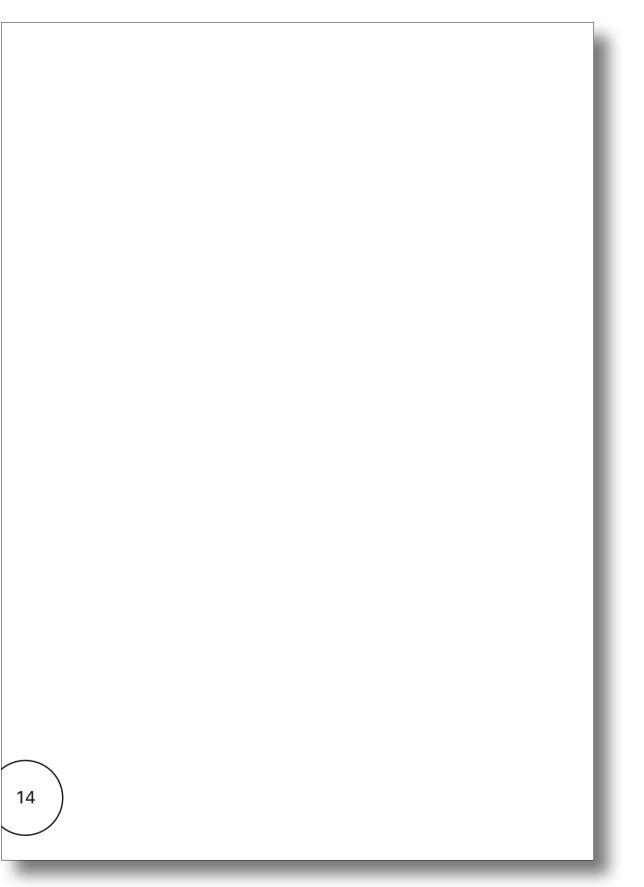
Buildings, or parts of buildings, requiring specific design are beyond the scope of this Acceptable Solution.

Storage water heater A water tank with an integral water heater for the storage of

Current G12 Water Supplies - No changes proposed to this page

Proposed G12 Water Supplies - No changes proposed to this page

WATER SUPPLIES

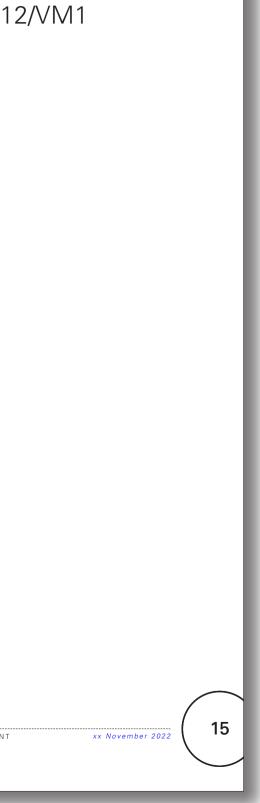

Wind zone Categorisation of wind force experienced on a particular site as determined in NZS 3604, Section 5.

mum ultimate lim	it state	speeds are:
wind zone	=	wind speed of 32 m/s
um <i>wind zone</i>	=	wind speed of 37 m/s
wind zone	=	wind speed of 44 m/s
high <i>wind zone</i>	=	wind speed of 50 m/s.
<i>ific design</i> is requ	ired for	wind speeds greater
50 m/s		

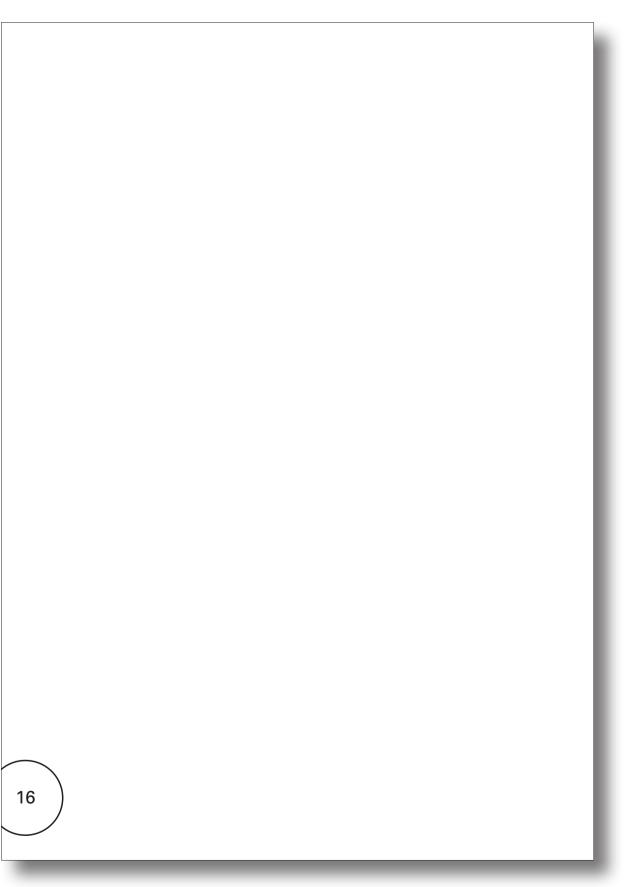
1 December 2007

Current G12 Water Supplies - No changes proposed to this page

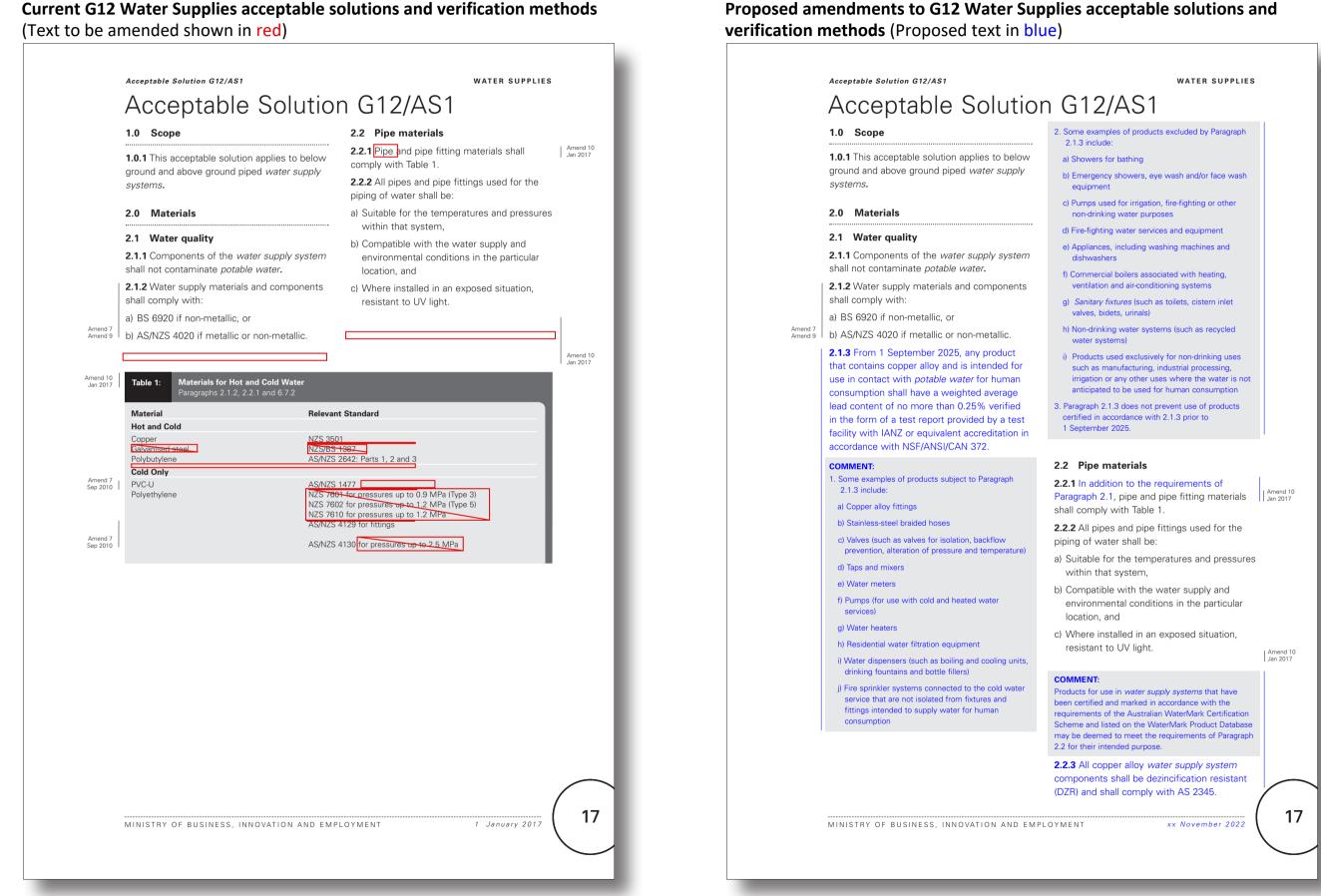
Proposed G12 Water Supplies - No changes proposed to this page



	WATER SUPPLIES	Verification Method G12/VM1
Verification Method G12/VN	/11	Verification Method G
1.0 Water Supply System		1.0 Water Supply Pipework Sizing
 1.0.1 A design method for <i>water supply</i> systems may be verified as satisfying the Performances of NZBC G12 if it complies with: mend 6 a) AS/NZS 3500.1 Section 2, Section 3 and 		1.0.1 The loading unit method of the Plumbing Engineering Services Design Guide is a means of determining maximum simultaneous flow rates for use in sizing hot and cold water services to comply with NZBC clause G12.
Appendix C: Sizing method for supply piping for dwellings (note that Appendix C is part of this Verification Method even though it is included in the standard as an "Informative" Appendix), and		COMMENT: Previous amendments to this Verification Method referenced revisions of AS/NZS 3500.1 and AS/NZS 3500.4. These standards are now referenced in G12/AS3.
Amend 6 Jun 2007 b) AS/NZS 3500.4.		
	15	


s acceptable solutions and

WATER SUPPLY PIPEWORK SIZING



Current G12 Water Supplies - No changes proposed to this page

Proposed G12 Water Supplies - No changes proposed to this page

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

WATER SUPPLIES	Acceptable Solution G12/AS1	
3.0 Protection of Potable Water	 Hose taps associated with High hazard situations like mixing of pesticides 	
3.1 Drawn water not to be returned	m) Irrigation systems with chemicals	
3.1.1 Water drawn from the <i>water main</i> shall	n) Laboratories	
be prevented from returning to that system by	o) Mortuaries	
avoiding cross connections or backflow.	p) Pest control equipment	
2.2. One connections muchibited	q) Photography and X-ray machines	
3.2 Cross connections prohibited	r) Piers and docks	
3.2.1 The <i>water supply system</i> shall be installed so that there is no likelihood of <i>cross</i>	s) Sewage pumps and sump ejectors	
connection between:	t) Sluice sinks and bed pan washers	
a) A potable water supply system and a	u) Livestock water supply with added chemicals	
non-potable water supply system,	v) Veterinary equipment	
b) A potable water supply system connected to a water main, and any water from another source including a private water supply,	Note: The examples given are not an exhaustive list. Where there is doubt comparison must be made to the hazard definitions.	
c) A <i>potable water supply system</i> and any	3.3.2 Medium hazard	
bathing facilities including swimming, spa or	Any condition, device or practice which, in	
paddling pools, and	connection with the <i>potable water supply</i>	
d) A potable water supply system and pipes,	system, has the potential to injure or	
fixtures or equipment (including boilers and	endanger health.	
pumps) containing chemicals, liquids, gases or other non- <i>potable</i> substances.	COMMENT: Medium hazard may include but not necessarily be limited to:	
3.3 Cross Connection Hazard	a) Appliances, vehicles or equipment	
3.3.1 High hazard	b) Auxiliary water supplies such as pumped and non-pumped fire sprinkler secondary water	
Any condition, device or practice which, in connection with the <i>potable water supply system</i> , has the potential to cause death.	c) Deionised water, reverse osmosis units and equipment cooling without chemicals	
COMMENT:	d) Fire sprinkler systems and <i>building</i> hydrant systems	
High hazard may include but not necessarily be limited to:	e) Hose taps and fire hose reels associated with	
a) Autoclaves and sterilisers	Medium hazard	
b) Systems containing chemicals such as anti-freeze,	 f) Irrigation systems with underground controllers g) Irrigation without chemicals 	
anti-corrosion, biocides, or fungicides	 a) Ingation without chemicals b) Livestock water supply without added chemicals 	
c) Beauty salon and hairdresser's sinks	 i) Untreated water storage tanks 	
d) Boiler, chiller and cooling tower make-up water	j) Water and steam cleaning	
e) Car and factory washing facilities	k) Water for equipment cooling	
f) Chemical dispensers	I) Drink dispensers with carbonators	
g) Chemical injectors	m) Swimming pools, spas and fountains	
h) Chlorinators	Note: The examples given are not an exhaustive list.	
i) Dental equipment	Where there is doubt comparison must be made to the	
j) Direct heat exchangers	hazard definitions.	
k) Fire sprinkler systems and fire hydrant systems that use toxic or hazardous water		
1 December 2007 MINISTRY	OF BUSINESS, INNOVATION AND EMPLOYMENT	

 source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. d) Hose taps associated with mixing of pesticides m) Irrigation systems with an pipes, or other non-potable substances. d) Hose taps associated with mixing of pesticides m) Irrigation systems with an pipes, or other non-potable substances. d) Poet control equipment or other non-potable substances. 	
Amend 7 Sep 2010 Copper NZS 3501 AS 1432 for pipes (type A, B or C) AS 3688 for fittings Polybutylene AS/NZS 2642: Parts 1, 2 and 3 Cross-linked polyethylene AS/NZS 2537: Parts 1, 2, 3 and 4 for fit Stainless steel AS 5200: Part 053 for pipes AS 3688 for fittings Cold Only PVC-U AS/NZS 1477 for pipes and fittings AS/NZS 4139 for PVC-U solvent cemer AS/NZS 4129 for FVC-U solvent cemer AS/NZS 4129 for fittings Amend 7 Sep 2010 3.0 Protection of Potable Water Ming hazard may include bu AS/NZS 4129 for fittings Amend 7 Sep 2010 3.1 Drawn water not to be returned 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections or backflow. Boiler, chiller and coolin 0 Systems containing che anti-corrosion, biocides, connection between: a) A potable water supply system and a non-potable water supply system connected to a water main, and any water from another source including a private water supply, Dental equipment b) A potable water supply system and an non-potable water supply system and an obting facilities including swimming, spa or paddling pools, and Dental equipment d) A potable water supply system and ap umps) containing chemicals, liquids, gases or other non-potable substances. Notuaries p) Pest control equipment pumps) containing chemicals, liquids, gases or other non-potable substances. Pest control equipment protecy and X-ray of Notuaries	
Amend 7 Amend 7 Ame	
Ameed 10 Cross-linked polyethylene AS/NZS 2492 for pipes Ameed 7 Stainless steel AS 3686 for fittings Cold Only AS/NZS 1377 for pipes and fittings Ameed 7 PVC-U AS/NZS 1377 for pipes and fittings Ameed 7 Polyethylene AS/NZS 1377 for pipes and fittings Ameed 7 Polyethylene AS/NZS 4130 for pipes Ameed 10 3.0 Protection of Potable Water High hazard may include bu Ameed 10 3.1 Drawn water not to be returned AS/NZS 4130 for pipes 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections or backflow. a) Autoclaves and sterilise 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: a) A potable water supply system and a non-potable water supply system, b) A potable water supply system and a non-potable water supply system and any bathing facilities including swimming, spa or paddling pools, and b) Hose taps associated w mixing of pesticides (A potable water supply system and pumps) containing chemicals, liquids, gases or other non-potable substances. mixing of pesticides (A potable water supply system and pumps) containing chemicals, liquids, gases or other non-potable substances. mixing of pesticides (A potable water supp	
Amend 7 Stainless steel AS 5200: Part 053 for pipes AS 3688 for fittings Cold Only PVC-U AS/NZS 1477 for pipes and fittings AS/NZS 3479 for PVC-U solvent cemer AS/NZS 4129 for fittings 3.0 Protection of Potable Water 3.1 Drawn water not to be returned 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections prohibited 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: a) A potable water supply system and a non-potable water supply system and a non-potable water supply system and a non-potable water supply system and an on-potable water supply system and an be thing facilities including swimming, spa or paddling pools, and () A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances.	
Armend 7 Sep 2010 Cold Only Armend 7 Sep 2010 PVC-U AS/NZS 1477 for pipes and fittings AS/NZS 3879 for PVC-U solvent cemer AS/NZS 4130 for pipes AS/NZS 4129 for fittings Armend 7 Sep 2010 3.0 Protection of Potable Water AS/NZS 4129 for fittings Armend 10 Jan 2017 3.0 Protection of Potable Water AS/NZS 4129 for fittings 3.0 Protection of Potable Water AS/NZS 4129 for fittings 3.1 Drawn water not to be returned 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections prohibited 9 Systems containing che anti-corrosion, biocides, externation between: 3.2 Cross connections prohibited 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: 9 Chemical injectors a) A potable water supply system connected to a water main, and any water from another source including a private water supply, 9 Dental equipment b) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and 9 Host taps associated w mixing of pesticides c) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. 9 Pest control equipment q) Photography and X-ray of	tings
Armend 7 Sep 2010PVC-UAS/NZS 1477 for pipes and fittings AS/NZS 3879 for PVC-U solvent cemer AS/NZS 4130 for pipes AS/NZS 4130 for pipes AS/NZS 4129 for fittingsArmend 7 Sep 20103.0 Protection of Potable WaterAS/NZS 4130 for pipes AS/NZS 4129 for fittingsArmend 10 Jan 20173.0 Protection of Potable Water	
Armend 7 Sep 2010 Armend 10 Substrate the set of	
Ammend 7 Sep 2010 AS/NZS 4129 for fittings Ammend 10 Ian 2017 3.0 Protection of Potable Water Ammend 10 Ian 2017 3.1 Drawn water not to be returned 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections or backflow. a) Autoclaves and sterilise 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: b) Systems containing che anti-corrosion, biocides, on and factory washing a) A potable water supply system and a non-potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and b) Hose taps associated w mixing of pesticides (1) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. (1) Hose taps associated w mixing of pesticides (2) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. (2) Mortuaries (3) Potography and X-ray fi	ts and priming fluids
 3.0 Protection of Potable Water 3.1 Drawn water not to be returned 3.1.1 Water drawn from the water main shall be prevented from returning to that system by avoiding cross connections or backflow. 3.2 Cross connections prohibited 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: a) A potable water supply system and a non-potable water supply system, b) A potable water supply system connected to a water main, and any water from another source including a private water supply. c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. c) Pest control equipment c) Potography and X-ray mater supply and X-ray mate	
 High hazard may include but an include but	-
 Autoclaves and sterilise a) Autoclaves and sterilise a) Autoclaves and sterilise b) System containing che anti-corrosion, biocides, avoiding cross connections or backflow. a) Autoclaves and sterilise b) Systems containing che anti-corrosion, biocides, anti-corrosion, biocides	not possessily be limited to:
 3.1.1 Water drawn from the <i>water main</i> shall be prevented from returning to that system by avoiding <i>cross connections</i> or <i>backflow</i>. 3.2 Cross connections prohibited 3.2.1 The <i>water supply system</i> shall be installed so that there is no likelihood of <i>cross connection</i> between: a) A <i>potable water supply system</i> and a non-<i>potable water supply system</i>, b) A <i>potable water supply system</i> connected to a <i>water main</i>, and any water from another source including a private water supply, c) A <i>potable water supply system</i> and any bathing facilities including swimming, spa or paddling pools, and d) A <i>potable water supply system</i> and pipes, <i>fixtures</i> or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-<i>potable</i> substances. 	
 avoiding cross connections or backflow. c) Beauty salon and hairdn d) Boiler, chiller and cooling e) Car and factory washing f) Chemical dispensers g) Chemical dispensers g) Chemical dispensers g) Chemical injectors h) Chlorinators i) Dental equipment j) Direct heat exchangers a) A potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. c) Beauty salon and hairdn d) Boiler, chiller and cooling e) Car and factory washing f) Chemical dispensers g) Chemical injectors h) Chlorinators h) Chlorinators h) Direct heat exchangers h) Eaboratories h) Hose taps associated w mixing of pesticides m) Irrigation systems with h) Laboratories p) Pest control equipment g) Photography and X-ray from the system of the system of the systems and private water supply and X-ray from the system of the system of	
 3.2 Cross connections prohibited 3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between: a) A potable water supply system and a non-potable water supply system, b) A potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. d) A potography and X-ray A-ray A-	or fungicides
 3.2 Cross connections prohibited a) A potable water supply system and a non-potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. e) Car and factory washing f) Chemical dispensers g) Chemical injectors h) Chlorinators i) Dental equipment i) Direct heat exchangers iii Dental equipment iii	
3.2.1 The water supply system shall be installed so that there is no likelihood of cross connection between:f) Chemical dispensers g) Chemical injectorsa) A potable water supply system and a non-potable water supply system,h) Chlorinatorsb) A potable water supply system connected to a water main, and any water from another source including a private water supply,j) Direct heat exchangers use toxic or hazardous of mixing of pesticidesc) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, andi) Hose taps associated w mixing of pesticides m) Irrigation systems with or other non-potable substances.d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances.n) Laboratoriese) Pest control equipment or other non-potable substances.p) Pest control equipment or Photography and X-ray or	
 installed so that there is no likelihood of cross connection between: a) A potable water supply system and a non-potable water supply system, b) A potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. g) Chemical injectors g) Dental equipment i) Direct heat exchangers g) Chemical injectors g) Dental equipment i) Direct heat exchangers k) Fire sprinkler systems and sustex toxic or hazardous or mixing of pesticides m) Irrigation systems with an in Laboratories o) Mortuaries p) Pest control equipment q) Photography and X-ray or provide the substances 	Tacilities
 Amed 10 an 2017 a) A potable water supply system and a non-potable water supply system, b) A potable water supply system connected to a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. h) Chlorinators h) Chlorinatoris h) Chlorinatoris h) Chlorinatoris 	
 non-<i>potable water supply system</i>, b) A <i>potable water supply system</i> connected to a <i>water main</i>, and any water from another source including a private water supply, c) A <i>potable water supply system</i> and any bathing facilities including swimming, spa or paddling pools, and d) A <i>potable water supply system</i> and pipes, <i>fixtures</i> or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-<i>potable</i> substances. i) Dental equipment i) Direct heat exchangers k) Fire sprinkler systems a use toxic or hazardous or nixing of pesticides m) Irrigation systems with n. Laboratories o) Mortuaries p) Pest control equipment q) Photography and X-ray restricts 	
 b) A <i>potable water supply system</i> connected to a <i>water main</i>, and any water from another source including a private water supply, c) A <i>potable water supply system</i> and any bathing facilities including swimming, spa or paddling pools, and d) A <i>potable water supply system</i> and pipes, <i>fixtures</i> or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-<i>potable</i> substances. j) Direct heat exchangers k) Fire sprinkler systems at use toxic or hazardous of history and any bathing facilities including swimming, spa or mixing of pesticides m) Irrigation systems with n) Laboratories o) Mortuaries p) Pest control equipment q) Photography and X-ray of 	
 a water main, and any water from another source including a private water supply, c) A potable water supply system and any bathing facilities including swimming, spa or paddling pools, and d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. k) Fire sprinkler systems a use toxic or hazardous or mixing of pesticides m) Hose taps associated w mixing of pesticides m) Irrigation systems with a private or private or potable substances. k) Fire sprinkler systems a use toxic or hazardous or haz	
bathing facilities including system and any bathing facilities including swimming, spa or paddling pools, andmixing of pesticides m) Irrigation systems with n) Laboratoriesd) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances.n) Laboratories p) Pest control equipment q) Photography and X-ray r	nd fire hydrant systems that vater
bathing facilities including swimming, spa or paddling pools, and m) Irrigation systems with d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances. n) Laboratories o) Mortuaries p) Pest control equipment or other non-potable substances. q) Photography and X-ray response	ith High hazard situations like
d) A potable water supply system and pipes, fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances.n) Laboratorieso) Mortuaries p) Pest control equipment q) Photography and X-ray re	chemicals
fixtures or equipment (including boilers and pumps) containing chemicals, liquids, gases or other non-potable substances.o) Mortuariesp) Pest control equipment q) Photography and X-ray re	
or other non- <i>potable</i> substances. q) Photography and X-ray r	
q/ Photography and X-ray i	
) Discussion of the second	nachines
3.3 Cross Connection Hazard r) Piers and docks	
3.3.1 High hazard sur	
Any condition, device or practice which, in U Livestock water supply	
connection with the potable water supply	auto addeu chennicais
system, has the potential to cause death. (v) veterinary equipment (v) bidets and douche seat	s I
w) Bidets and douche seat	

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Acceptable Soli	ition G12/AS1				WA	TER SUPPLIES		Acceptable S	Solution G12/AS
3.3.3 Low haz	ard		3.4	.2 Backflow pr	otection shall I	be determined		x) Handheld bi	idet hoses and W
Any condition,	device or prac	ctice which, in	by	identifying the	individual cros	ss connection		y) Connections	is for portable and
	th the <i>potable</i>			ard(s) and bac				z) Demineralis	sing equipment us
	l constitute a r			iter from each n- <i>potable</i> until a				with acid an	nd alkali regenerat
olour, odour o ndanger heal	or taste, but no th	ot injure or		tection is insta		buoknow			e waste disposal e
0			3.4	.3 Backflow pr	otection shall b	be achieved by:			amples given are n s doubt compariso
OMMENT:	include but not ne	ecessarily be	a) A	An <i>air gap,</i> in a	ccordance wit	h Paragraph		hazard definitio	
nited to:		,		3.5, or				3.3.2 Mediu	um hazard
) Drink dispense	rs (except carbon	ators).		A backflow pre				Any condition	on, device or p
	ile given is not an			accordance wit	h Paragraphs	3.4.4 and			with the potal
/here there is de azard definitions		must be made to		3.4.5.				-	s the potential
				.4 Backflow pr the cross conn		be appropriate		endanger he	calui.
.4 Backflo	w protection	l		ne <i>cross conn</i> agraph 3.3.	ection nazard (contained in		COMMENT:	rd may include b
3.4.1 Backflow	/ protection sh	all be provided		.5 The selectio	n of the appro	priate		limited to:	na may include bi
o <i>backflow</i> in	ssible for wate to the <i>potable</i>	r or contamina water supply	nts bac	ckflow protection ard is given in	on for the <i>cros</i>				vater supplies suo ed fire sprinkler s
system.				MMENT:				b) Connection	ns for appliances
		er used for person	Tabl	le 2 includes <i>air g</i>	ap separation.				water, reverse or t cooling without
ygiene is contair	ned in Paragraph	4.1.						d) Fire sprinkle	ler systems and
									and fire hose ree azard situations
Table 2: Se	lection of Backf	low Protection							systems with unde
	ragraph 3.4.5								vithout chemicals
Type of		C	ROSS CONNE	CTION HAZARD				h) Livestock v	water supply with
backflow protection	HIG	iH	MED	NUM	LOW	1		i) Untreated v	water storage tar
Air an-	back-pressure	back-siphonage	back-pressure	back-siphonage	back-pressure I	back-siphonage		j) Water for s	steam cleaning
<i>Air gap</i> (see Note 1)	1	1	1	1	1			k) Water for e	equipment coolin
Reduced	1	/	1	1	1	,		I) Drink dispe	ensers with carbo
pressure zone device	v	v	v	~	<i>,</i>	~		m) Swimming	pools, spas and
Double check valve assembly			1	1	✓	✓		n) Treated grey	y water
(see Note 2)								o) Air handling	unit humidifiers v
Pressure type vacuum breaker		1		1		1		Notes:	
(see Note 3)									les given are not ar ot comparison mus
Atmospheric vacuum breaker		1		1		1		definitions.	
(see Note 4)									ted drink dispense
Note:	t not be installed in	n a toxic environme	nt						wnstream of the made of copper
		alled in a medium a		toxic environment.				carbon dioxic	
		re designed to vent nly in systems which							
		e a specific type of			are run crosing of th				
							10		
DEPARTMENT	OF BUILDING	AND HOUSING			1 De	ecember 2007	19		NT OF BUILD
DEPARTMENT	OF BUILDING	AND HOUSING			1 De	ecember 2007	19		NT OF BUILDI

WATER SUPPLIES

3.3.3 Low hazard

Any condition, device or practice which, in connection with the *potable water supply system*, would constitute a nuisance, by colour, odour or taste, but not injure or endanger health.

COMMENT:

Low hazard may include but not necessarily be limited to:

- a) Drink dispensers (except carbonators)
- b) Drinking fountains and bottle fillers
- c) Rainwater tanks and supply systems (see Note 2)
- d) External hose taps, with no hazards within 18 m
- e) Emergency eye wash and shower stations

Notes:

 The examples given are not an exhaustive list. Where there is doubt comparison must be made to the hazard definitions.

2. Air gap separation is the recommended type of backflow prevention for a rainwater tank with a *potable water* supply connection.

3.4 Backflow protection

3.4.1 *Backflow* protection shall be provided where it is possible for water or *contaminants* to *backflow* into the *potable water supply system.*

COMMENT:

The protection of non-*potable water* used for personal hygiene is contained in Paragraph 4.1.

3.4.2 *Backflow* protection shall be determined by identifying the individual *cross connection* hazard(s) and *backflow* protection required. Water from each hazard shall be regarded as non-*potable* until an appropriate *backflow* protection is installed.

3.4.3 Backflow protection shall be achieved by:

a) An *air gap*, in accordance with Paragraph 3.5, or

b) A *backflow prevention device* selected in accordance with Paragraphs 3.4.4 and 3.4.5, or

c) A backflow prevention device provided as an integral part of a fixture, appliance or apparatus that is appropriate for the cross connection hazard.

xx November 2022

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

WATER SUPPLIES

3.4.4 *Backflow* protection shall be appropriate to the cross connection hazard contained in Paragraph 3.3

3.4.5 The selection of the appropriate *backflow* protection for the cross connection hazard is given in Table 2.

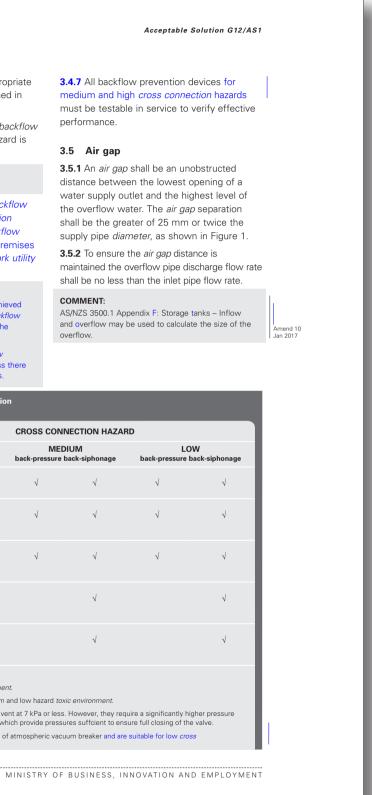
COMMENT

Table 2 includes air gap separation.

3.4.6 In addition to the provision of *backflow* protection for individual cross connection hazards, appropriate *containment backflow* protection shall be provided where a premises listed in Table 2A is served by a *network utility* operator's water main.

COMMENT:

1. Containment backflow protection can be achieved by providing an *air gap* or an appropriate *backflow* prevention device as near as practicable to the network utility operator's point of supply.


2. Water downstream of containment backflow protection is considered to be potable, unless there are unprotected hazards within the premises

Selection of Backflow Protection Paragraph 3.4.5 Table 2:

Type of backflow CROSS CONNECTION HAZARD protection HIGH MEDIUM back-pressure back-siphonage back-pressure back-siphonage *Air gap* (see **Note 1**) $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Reduced N pressure zone device Double *check valve* $\sqrt{}$ (see Note 2) Pressure type vacuum (see Note 3) Atmospheric type vacuum (see Note 4) Note: 1. Air gaps must not be instaled in a toxic environment. 2. Double check valves can be installed in a medium and low hazard toxic environment. 3. Pressure type vacuum breakers are designed to vent at 7 kPa or less. However, they require a significantly higher pressure to reseat and must be installed only in systems which provide pressures suffcient to ensure full closing of the valve. 4. Hose outlet vacuum breakers are a specific type of atmospheric vacuum breaker and are suitable for low cross

19A xx November 2022

COMMENT: overflow.

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) Acceptable Solution G12/AS1 Containment Backflow Protection Paragraph 3.4.6 Table 2A: Premises Abattoirs Car and plant washing facilities Chemical laboratories Chemical plants Factories using, processing or manufacturing toxic chemicals Hospitals, mortuaries, veterinary clinics and the like Metal finishing plants Pathology laboratories Petroleum processing plants or storage plants Piers, docks, marinas and other waterfront facilities Premises where access to conduct inspections is restricted Premises with an alternative water supply, excluding rainwater harvesting tanks Sanitary depots Sewage treatment plants and sewage lift stations Timber treatment facilities Universities Caravan parks Food and beverage processing plants Premises with fire-fighting water services Premises with greywater re-use systems Premises with reticulated and disinfected reclaimed water system Public swimming pools Premises with rainwater tanks Notes: Air gaps must not be installed in a toxic environment.
 RPZD = Reduced pressure zone device. MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

WATER SUPPLIES

Hazard ratingBackflow prevention deviceHighAir gap or RPZDHighAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or testable deviceMediumAir gap or testable deviceMediumAir gap or testable deviceMediumAir gap or testable deviceLowAir gap or testable deviceLowAir gap or testable device			
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or <b< th=""><th></th><th>Hazard rating</th><th></th></b<>		Hazard rating	
HighAir gap or RPZDHighAir gap or testable deviceMediumAir gap or testable deviceMediumA		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDKediumAir gap or testable deviceMediumAir gap or <b< td=""><td></td><td>High</td><td>Air gap or RPZD</td></b<>		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDKediumAir gap or testable deviceMediumAir gap or testable deviceMedium		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or testable device <td></td> <td>High</td> <td>Air gap or RPZD</td>		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or testable device<		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDHediumAir gap or RPZD <td></td> <td>High</td> <td>Air gap or RPZD</td>		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDAir gap or RPZDAir gap or RPZDMediumAir gap or RPZDMediumAir gap or RPZDAir gap or RPZDAir gap or RPZDMediumAir gap or RPZDLowAir gap, testable device		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or testable		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDMediumAir gap or RPZDMediumAir gap or testable deviceMediumAir		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDWediumAir gap or RPZDMediumAir gap or RPZDHerzHerzMediumAir gap or RPZDHerzHerzMediumAir gap or RPZDHerzHerzMediumAir gap or RPZDHerzHerzMediumAir gap or RPZDHerzHerz <tr< td=""><td></td><td>High</td><td>Air gap or RPZD</td></tr<>		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDMediumAir gap or restable deviceMediumAir gap or restable device		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDMediumAir gap or RPZDHerduAir gap or RPZD		High	Air gap or RPZD
HighAir gap or RPZDHighAir gap or RPZDHighAir gap or RPZDMediumAir gap or testable deviceMediumAir gap or testable deviceLowAir gap, testable device		High	Air gap or RPZD
High Air gap or RPZD Medium Air gap or testable device Medium Air gap or tes		High	Air gap or RPZD
Medium Air gap or testable device		High	Air gap or RPZD
Low Air gap or testable device Medium Air gap or testable device Low Air gap, testable device		High	Air gap or RPZD
Low Air gap or testable device Medium Air gap or testable device Low Air gap, testable device	l		
testable device Medium Air gap or testable device Low Air gap, testable device		Medium	
testable device Medium Air gap or testable device Low Air gap, testable device		Medium	
testable device Medium Air gap or testable device Medium Air gap or testable device Medium Air gap or testable device Low Air gap, testable device		Medium	
testable device Medium Air gap or testable device Low Air gap, testable device		Medium	
testable device		Medium	
		Medium	
		Low	
	ΤV		xx November 2022
NT xx November 2022			
NT xx November 2022			

the air gap.

Paragraph 3.5.2.

3.6.1 Location

be located:

WATER SUPPLIES

Acceptable Solution G12/AS1

3.5.3 Air gaps shall not be used in a toxic

environment to prevent contaminated air

entering the water and piping system through

3.5.4 Where any *fixture* or tank has more than

one supply pipe, the air gap separation shall be

the greater of 25 mm or twice the sum of the

inlet pipe diameters and shall also comply with

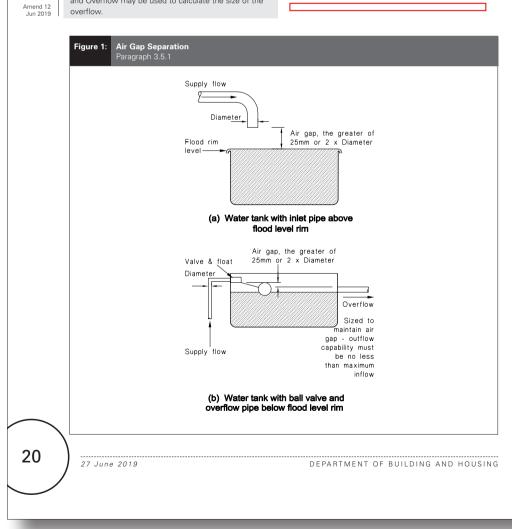
Backflow prevention devices and air gaps shall

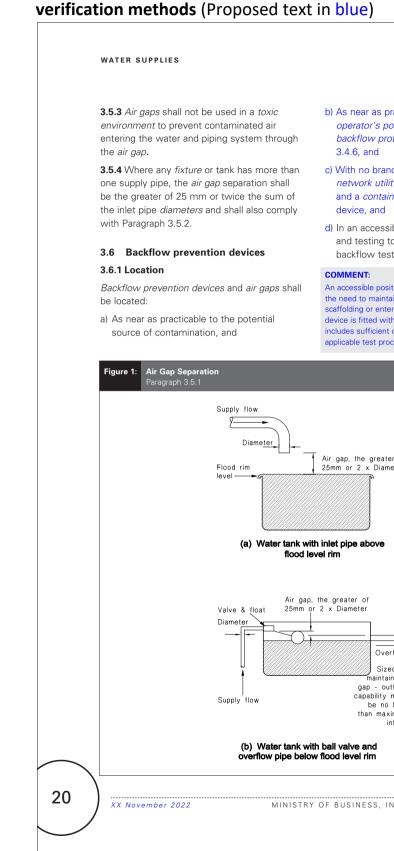
3.6 Backflow prevention devices

a) As near as practicable to the potential

source of contamination, and

3.4.6 All *backflow prevention devices* must be testable in service to verify effective performance.

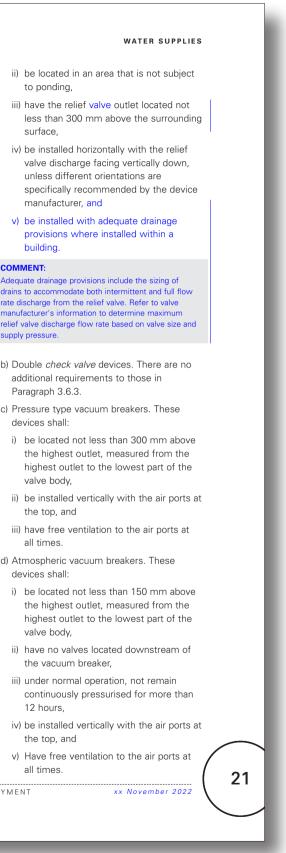

3.5 Air gap

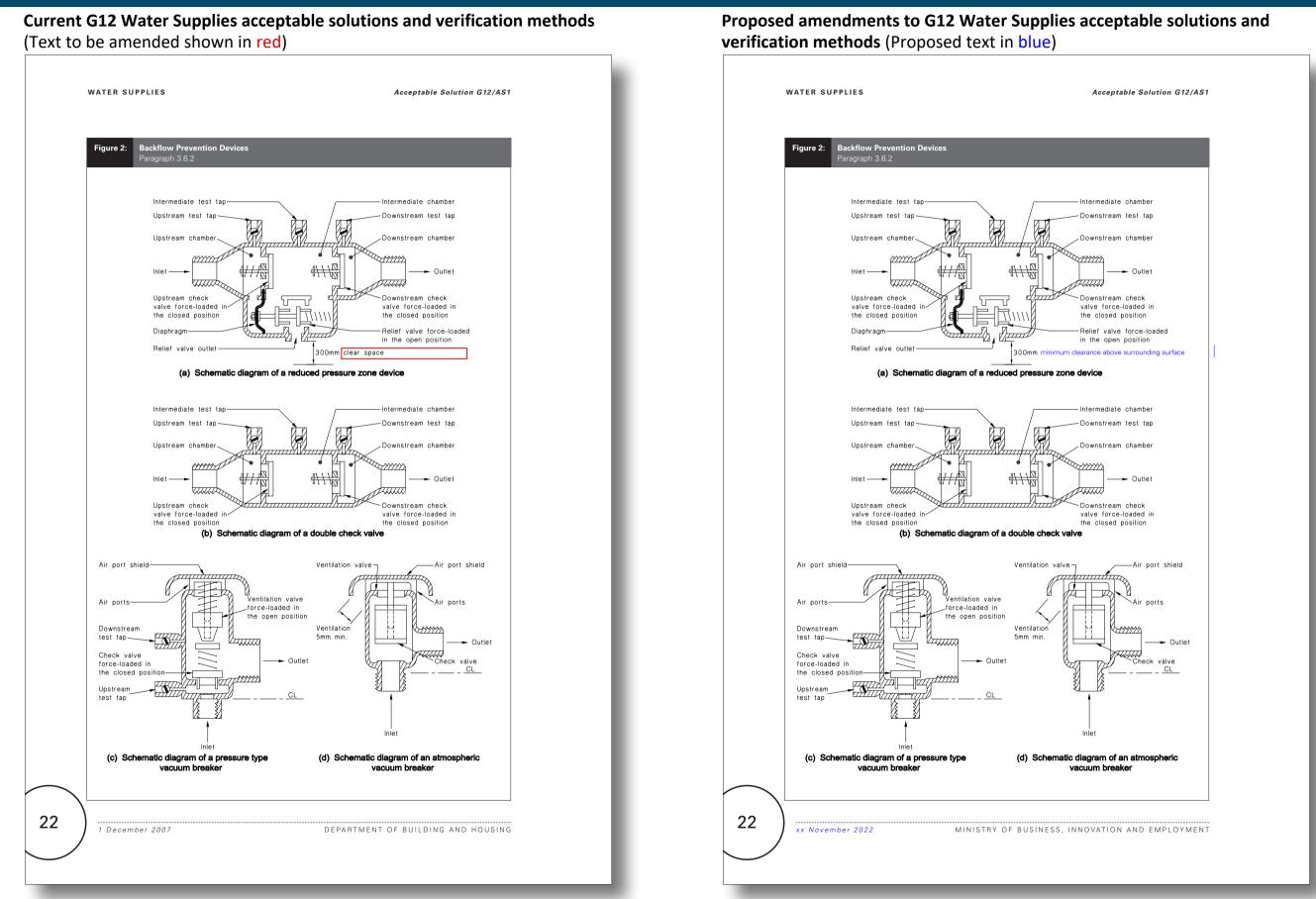

3.5.1 An *air gap* shall be an unobstructed distance between the lowest opening of a water supply outlet and the highest level of the overflow water. The *air gap* separation shall be the greater of 25 mm or twice the supply pipe *diameter*, as shown in Figure 1.

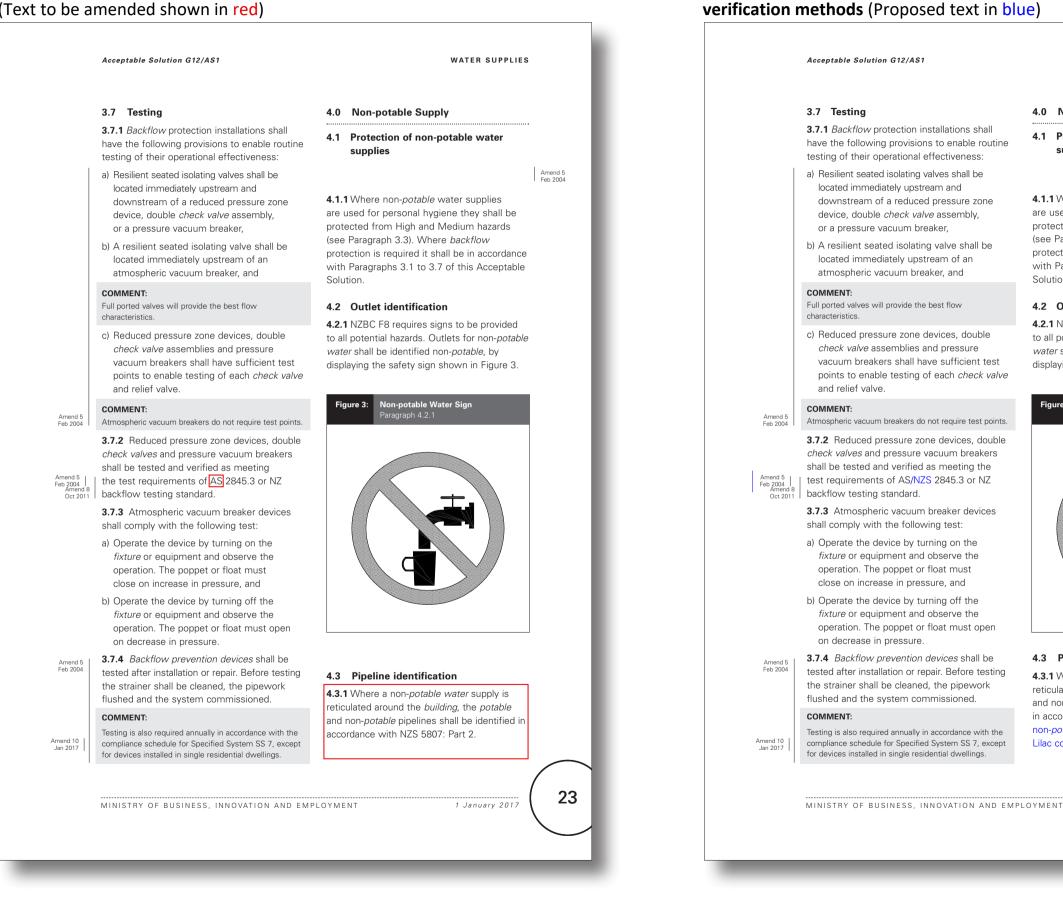
3.5.2 To ensure the *air gap* distance is maintained the overflow pipe discharge flow rate shall be no less than the inlet pipe flow rate.

COMMENT:

AS/NZS 3500.1 Appendix G: Storage Tanks – Inflow and Overflow may be used to calculate the size of the overflow.




Proposed amendments to G12 Water Supplies acceptable solutions and


Acceptable Solution G12/AS1	
s practicable to the <i>network utility</i> point of supply for containment protection required by Paragraph	
ranch connections between the tility operator's point of supply tainment backflow protection d	
ssible position for maintenance g to AS/NZS 2845.3 or NZ testing standard.	Amend 8 Oct 2011
position excludes those which necessitate intain or test a device from a ladder or nter into a confined space. Where a with test taps, an accessible position ant clearance for the performance of the procedures.	
later of lameter	
e	
verflow	
bized to ntain air outflow ty must no less naximum inflow	
, INNOVATION AND EMPLOYMENT	

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

 But is accessible position for marketing of Sign S or N2 boords of the field weak outsign of the Sign S or N2 boords of the Sign S or N2 boords of the Sign Sign Sign Sign Sign Sign Sign Sign		Acceptable Solution G12/AS1	WATER SUPPLIES	Acceptable Solution G12/A	
 Address of Comparison of the first of the control of the control of the control of the first of the control of the first of the control of the first of the control of the con		_		3.6.2 Manufacture	
 42 Standarding 42 Standarding 43 Standarding 44 Standarding 44 Standarding 44 Standarding 45 Standarding <	Amend 8	and testing to AS 2845.3 or NZ backflow			vices shall comply
 active prevention divides shall be read-flatted to be found 2 with the reliar when the decharge heary writingly down, unless different checks are as a constraint of the value of the software of the value of the value	Oct 2011			Amend 10 See Figure 2 for example back	kflow prevention devi
 A 3.3 General installation requirements B control co			less than 300 mm above the surrounding	Jan 2017	
 ASARZ SUBJ. Section 10 Ges Figure 2.00, and ASARZ SUBJ. Section 40 Ges Figure 2.00, and ASARZ SUB SUBJ. Section 40 Ges Figure 2.00, and ASARZ SUB	Amend 10 Jan 2017		iv) be installed horizontally with the relief	3.6.3 General installation	on requirements
 a) Pressue type volume backers to and an advected to advect the advected to advect the advected to advect the advected to advecte			unless different orientations are		
 b.3.5 General mislandouth requirements Backflow prevention devices shall is a) Fitted with a line strainer upstream to prevent particles and corrosion products from the pipework tradenging the devices appropriate to the lowest part of the wile body. a) A paper smay only be fitted where the top, asso contains another backflow prevent particles and corrosion products and the top. and b) A paper smay only be fitted where the top, asso contains another backflow prevent particles and corrosion products and the top. and c) A paper smay only be fitted where the top, and c) Protected from the effects of corrosive to the same hazard rating. c) Protected from the effects of corrosive to the same hazard rating. c) Protected from the effects of corrosive to the same hazard rating. c) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the effects of corrosive to the same hazard rating. d) Protected from the relative down prevention environment rating cause the maline highest culter to the lowest part of the vacuum breaker. have no valves located downstream of the vacuum breaker. have no valves located downstream of the vacuum breaker. have free ventilation to the air ports at the top, and have free ventilation to the air ports at the top, and have free ventilation to the air ports at at the top, and have free ventilation to the air ports at at the top, and have free ventilation to the air ports at at the top, and have free ven		 c) Pressure type vacuum breakers to AS/NZS 2845.1 Section 9, (see Figure 2 (c)), and d) Atmospheric vacuum breakers to AS/NZS 2845.1 Section 4 for atmospheric vacuum breakers (see Figure 2 (d)), and 	 manufacturer. b) Double <i>check valve</i> devices. There are no additional requirements to those in Paragraph 3.6.3. c) Pressure type vacuum breakers. These devices shall: 	prevent particles and o from the pipework rem ineffective, b) Fitted with unions on of the valve to allow fo valve,	corrosion products ndering the device the inlet and outle for the removal of
 Backflow prevention devices shall be: a) Fitted with a line strainer upstram to prevent particles and corrosion products from the pipework rendering the device infective. b) A by-pass may only be fitted withered the device appropriate to the same hazard traing. c) Protected from the effects of corrosive provide to the source strain another backflow prevent particles and corrosine products in the object of the device appropriate to the same hazard traing. c) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide to the lowest part of the value body. d) Protected from the effects of corrosive provide and protected from the highest outlet to the lowest part of the value body. d) Protected from the effects of corrosive provide and protected from the solute and the active and the value body. d) Protected from the effects of corrosive provide and from a covid environment may ensemble mitting the event brokes. d) Protected from the solute and the active and the solute and		3.6.3 General installation requirements		with Paragraph 3.7.1,	
 <i>prevention device</i> appropriate to the same hazard rating. <i>protected from the effects of corrosive or toxic environments,</i> and <i>d</i> Protected from the effects of corrosive or toxic environments, and <i>d</i> Protected from damage. <i>COMMENT</i> <i>he device shall</i> <i>be located not less than 150 nm above the highest outlet, measured from the highest outlet to the lowest part of the value body.</i> <i>he device shall</i> <i>be located not remain control devices apparation.</i> <i>he device folluted air from a toxic environments may cause the maffunction of the device. Polluted air from a toxic environment may enter the piping system through the <i>air gap</i> or open part went thus negating the effective <i>air gap</i> separation.</i> <i>The device should be protected from physical and rot termain correct of negaration.</i> <i>he isstalled vertically with the air ports at the top, and</i> <i>Have free vertilation to the air ports at all times.</i> <i>Becklow prevention devices</i> shall be installed as follows: <i>Becklow prevention devices.</i> <i>Have free vertilation to the air ports at a follows:</i> <i>Becklow prevention devices.</i> <i>Have free vertilation to the air ports at a follows:</i> <i>Becklow prevention devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <i>Have free vertilation to the atmosphere in the devices.</i> <li< i=""></li<>		 a) Fitted with a line strainer upstream to prevent particles and corrosion products from the pipework rendering the device ineffective. b) A by-pass may only be fitted where 	valve body, ii) be installed vertically with the air ports at the top, and iii) have free ventilation to the air ports at	Amend 12 Jun 2019 Amend 12 device appropriate to t rating, e) Protected from the eff	backflow prevention the same hazard fects of corrosive
 a) Protected from the effects of corrosive or taxic environments, and b) be located not less than 150 mm above the highest outlet, measured from the highest outlet, measured from the highest outlet, measured from the highest outlet to the lowest part of the value body. a) Protected from damage. b) the dovice should be statched only after the pipework has been flushed. c) Corrosive environments may cause the malfunction or devices should be protected from physical and root activation on the air part or open port vent thus negating the effective air gap separation. c) The device should be protected from physical and root favore environments. a) The device should be protected from physical and root favore environments. c) be installed vertically with the air ports at the top, and c) Have free ventilation to the air ports at all times. c) As for the avice should be protected from physical and root favore environments. c) be installed vertically with the air ports at all times. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root favore environments. c) As for the avice should be protected from physical and root environments. c) As for the favore should be protected from physical and root environments. c) As for the favore should be installed vertically with the air ports at all times. 		prevention device appropriate to the same	d) Atmospheric vacuum breakers. These		and protected fro
 valve body, valve body, or the device should be attached only after the pipework has been flushed. a. Corrosve environments may cause the malfunction of the device, Polluted ai from a toxic environment may enter the piping system through the air gap or open port vent thus negating the effective air gap separation. b. The device should be protected from physical and frost damage and installed without the application of heat. c. As Specific installation requirements Backflow prevention devices shall be installed as follows: a) Reduced pressure zone devices. These devices shall: MINISTERY OF BUISINESS_INNOVATION AND EMPLOYMENT Lignuary 2017 		c) Protected from the effects of corrosive or toxic environments, and	the highest outlet, measured from the	1. The device should be attach pipework has been flushed.	
 2. Corrosive environments may cause the malfunction of the device. Polluted air from a toxic environment may enter the piping system through the <i>air gap</i> or open port vent thus negating the effective <i>air gap</i> separation. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. A Specific installation requirements Backflow prevention devices shall be installed as follows: a) Reduced pressure zone devices. These devices shall: MINISTEX OF BUSINESS, INNOVATION AND EMPLOYMENT 		COMMENT: 1. The device should be attached only after the	ii) have no valves located downstream of	of the device. Polluted air fr may enter the piping system or open port vent thus nega	rom a <i>toxic environme</i> m through the <i>air gap</i>
 app separation. 3. The device should be protected from physical and frost damage and installed without the application of heat. 3. For device shall without the application of heat. 3. For device shall without the application of heat. 3. For device shall be installed without the application of heat. 3. For devices shall be installed without the application of heat. 3. For devices shall be installed without the application devices shall be installed as follows: a) Reduced pressure zone devices. These devices shall: b. Provide With SLEX. UNIVERSEL INNOVATION AND EMPLICIATION AND EMPLICIATI		 Corrosive environments may cause the malfunction of the device. Polluted air from a <i>toxic environment</i> 	continuously pressurised for more than	frost damage and installed v	
of heat. all times. 3.6.4 Specific installation requirements Backflow prevention devices shall be installed as follows: as follows: a) Reduced pressure zone devices. These devices shall: i) have free ventilation to the atmosph for the relief valve outlet at all times.		gap separation.3. The device should be protected from physical and	the top, and	maintenance or repair of a <i>ba</i> installed within a building, cor	ackflow protection device mpliance with NZBC cla
Backflow prevention devices shall be installed as follows: a) Reduced pressure zone devices. These devices shall: i) have free ventilation to the atmosph for the relief valve outlet at all times				3.6.4 Specific installation	on requirements
as follows: a) Reduced pressure zone devices. These devices shall: i) have free ventilation to the atmosph for the relief valve outlet at all times 					<i>vices</i> shall be insta
devices shall: i) have free ventilation to the atmosph for the relief valve outlet at all times UNISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 1 January 2017 21		as follows:			ie devices. These
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT I JANUARY 2017		devices shall:			
			2LOYMENT 1 January 2017	MINISTRY OF BUSINESS	, INNOVATION AI

Proposed amendments to G12 Water Supplies acceptable solutions and

WATER SUPPLIES

4.0 Non-potable Supply

4.1 Protection of non-potable water supplies

Amend 5 Feb 2004

4.1.1 Where non-*potable* water supplies are used for personal hygiene they shall be protected from High and Medium hazards (see Paragraph 3.3). Where *backflow* protection is required it shall be in accordance with Paragraphs 3.1 to 3.7 of this Acceptable Solution.

4.2 Outlet identification

4.2.1 NZBC F8 requires signs to be provided to all potential hazards. Outlets for non-*potable water* shall be identified non-*potable*, by displaying the safety sign shown in Figure 3.

4.3 Pipeline identification

4.3.1 Where a non-*potable water* supply is reticulated around the *building*, the potable and non-potable pipework shall be identified in accordance with AS/NZS 3500.1 and all non-*potable water* supply pipework shall be Lilac coloured.

xx November 2022

WATER SUPPLIES

Acceptable Solution G12/AS1

Amend 10 Jan 2017

5.0 Water Supply

5.1 Water tanks

5.1.1 To ensure the health and safety of people in the event of the water main supply being interrupted, buildings having the classification of Community Care (e.g. hospitals, old people's homes, prisons) shall be provided with cold water storage of no less than 50 litres per person.

COMMENT:

- 1. Cold water storage is required only to maintain adequate personal hygiene within buildings where the principal users are legally or physically confined.
- 2. Refer to the NZBC A1 for classification of buildings.
- 3. Network utility operators cannot guarantee a continuous supply of water. Building owners may therefore wish to provide water storage to buildings having a classification other than Community Care, to enable continuation of a business, service, industrial process or other reasor
- 4 The "litres per person" is based on a daily use of 20 litres WC, 25 litres washing, 5 litres drinking.

5.2 Water tank installation

5.2.1 Location

Water tanks in roof spaces shall be located and supported as detailed in Figure 4.

5.2.2 Overflow pipes

Water tanks shall have an overflow pipe to discharge any overflow to a visible place within the same property that does not create a nuisance or damage to *building elements*. The overflow pipe shall be sized so that the discharge capacity is no less than the maximum inlet flow. The outlet of the overflow pipe shall not permit the entry of birds or vermin. Overflow from a WC cistern may discharge internally into a WC pan.

5.2.3 Safe trays

Performance E3.3.2: states that; Free water from accidental overflow from *sanitary fixtures* or sanitary appliances must be disposed of in a way that avoids loss of amenity or Amend 10 Jan 2017 damage to *household units* or *other property*. An acceptable method of preventing water damage is to locate a safe tray below the water tank (see Figure 4). The safe tray

24

diameter of 40 mm. Where the tank overflow discharges into the safe tray, the diameter of the safe tray drain shall be greater than the overflow pipe from the tank and comply with Paragraph 5.2.2.

shall incorporate a drain with a minimum

5.2.4 Covers

Covers shall be provided to:

- a) Potable water tanks to prevent contamination and the entry of vermin, and
- b) All tanks located in roof spaces to prevent condensation damaging building elements.

5.2.5 Access

Covers to water tanks shall be removable or shall contain a covered opening to allow access for inspection and maintenance A minimum height clearance of 350 mm above the opening is necessary for easy access.

5.2.6 Supporting structure

The supporting structure for water tanks shall be protected from damage due to condensation where durability of the supports could be compromised by moisture. A material such as H3 treated timber shall be installed under the water tank.

5.2.7 Structural support

NZBC B1 requires water tanks to be adequately supported including seismic restraint. The method illustrated in Figure 4 is acceptable for water tanks up to 150 litre capacity and the maximum height to breadth ratio of 1:1.

5.3 Water pipe size

5.3.1 Pipe sizing

Pipes shall be sized

a) To achieve the flow rates given in Table 3, or b) Using the sizes given in Table 4.

COMMENT:

Manufacturers' literature must be referenced for pressure and flow information on tempering valves and tapware. Outlets (e.g. shower mixers and showerheads) must be appropriate for the available flow and pressure. itations on lengths and pipe sizes given Note the lim in Table 3.

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

WATER SUPPLIES

5.0 Water Supply

5.1 Water tanks

To ensure the health and safety of people in the event of the water main supply being interrupted, buildings having the classification of Community Care (e.g. hospitals, old people's homes, prisons) shall be provided with cold water storage of no less than 50 litres per person.

COMMENT:

1. Cold water storage is required only to maintain adequate personal hygiene within buildings where the principal users are legally or physically confined.

- 2. Refer to the NZBC A1 for classification of buildings.
- 3. Network utility operators cannot guarantee a continuous supply of water. Building owners may therefore wish to provide water storage to buildings having a classification other than Community Care, to enable continuation of a business, service, industrial process or other reason

4 The "litres per person" is based on a daily use of 20 litres WC, 25 litres washing, 5 litres drinking.

5.1.2 Disinfection

Potable water tanks shall be cleaned and disinfected prior to use in accordance with AS/NZS 3500.1 Appendix G.

5.2 Water tank installation

5.2.1 Location

Water tanks in roof spaces shall be located and supported as detailed in Figure 4.

5.2.2 Overflow pipes

Water tanks shall have an overflow pipe to discharge any overflow to a visible place within the same property that does not create a nuisance or damage to *building elements*. The overflow pipe shall be sized so that the discharge capacity is no less than the maximum inlet flow. The outlet of the overflow pipe shall not permit the entry of birds or vermin. Overflow from a WC cistern may discharge internally into a WC pan.

24

ratio of 1:1.

xx November 2022

1 January 2017

COMMENT

5.2.4 Covers

5.2.5 Access

5.1.1 Water storage

5.2.3 Safe trays

Acceptable Solution G12/AS1

AS/NZS 3500.1 contains alternative provisions for the installation of water tanks, and is referenced as an acceptable solution in G12/AS3. Refer to AS/NZS 3500.1 clause 8.4.4.2 for examples of acceptable water tank overflow pipe discharge locations

Performance E3.3.2: states that; Free water from accidental overflow from sanitary fixtures or *sanitary appliances* must be disposed of in a way that avoids loss of amenity or damage to household units or other property. An acceptable method of preventing water damage is to locate a safe tray below the water tank (see Figure 4). The safe tray shall incorporate a drain with a minimum diameter of 40 mm. Where the tank overflow discharges into the safe tray, the diameter of the safe tray drain shall be greater than the overflow pipe from the tank and comply with Paragraph 5.2.2.

Amend 10 Jan 2017

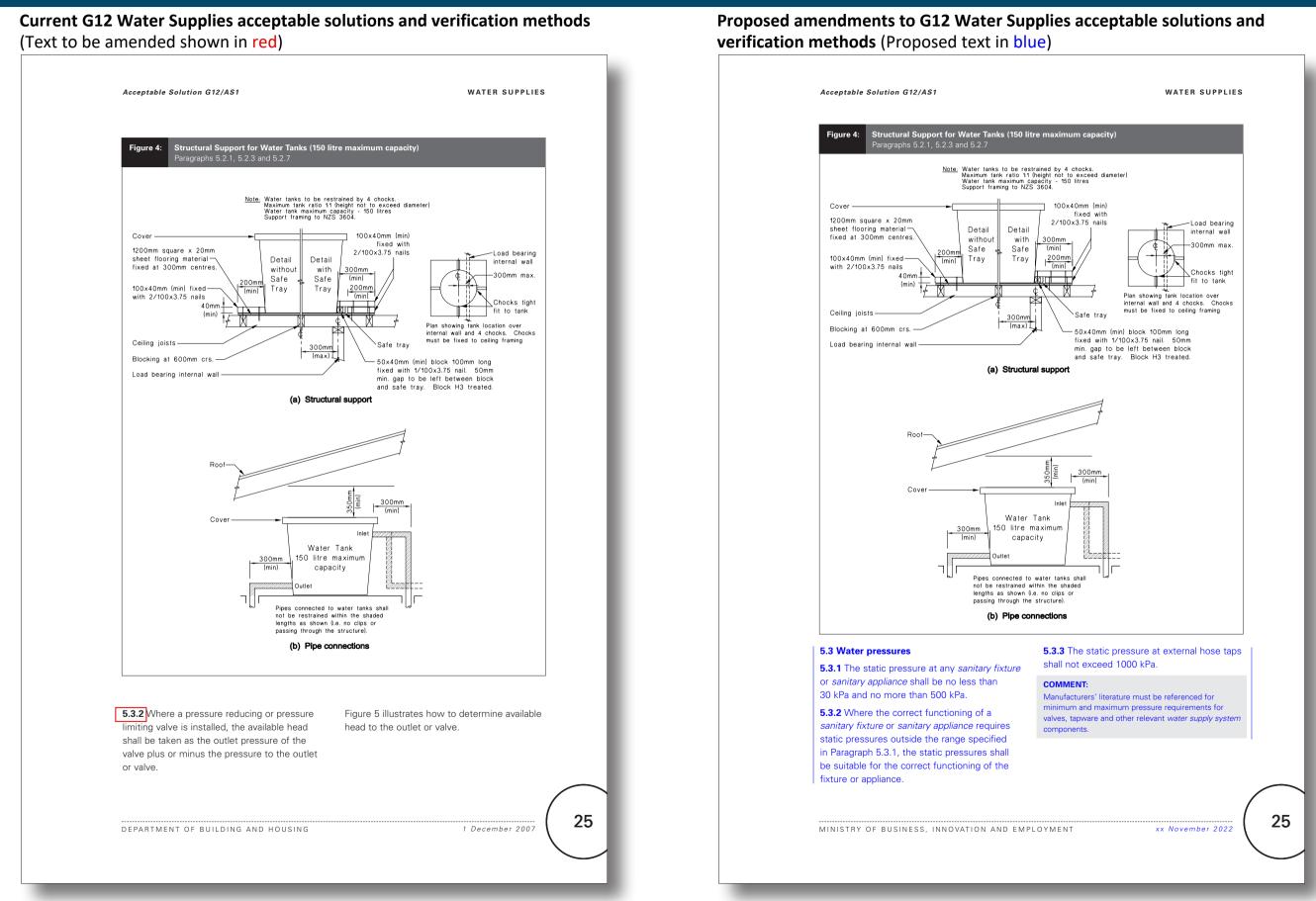
Covers shall be provided to:

a) Potable water tanks to prevent

contamination and the entry of vermin, and

b) All tanks located in roof spaces to prevent condensation damaging building elements.

Covers to water tanks shall be removable or shall contain a covered opening to allow access for inspection and maintenance. A minimum height clearance of 350 mm above the opening is necessary for easy access.


5.2.6 Supporting structure

The supporting structure for water tanks shall be protected from damage due to condensation where durability of the supports could be compromised by moisture A material such as H3 treated timber shall be installed under the water tank.

5.2.7 Structural support

NZBC B1 requires water tanks to be adequately supported including seismic restraint. The method illustrated in Figure 4 is acceptable for water tanks up to 150 litre capacity and the maximum height to breadth

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Table 3: Acceptabl Paragraph		Sanitary Fixtures		
Sanitary fixture	Flow rate I/s and °C	and temperature	How measured	
Bath	0.3 at 45°	С	Mix hot and cold water t	o achieve 45°C
Sink	0.2 at 60° 0.2 (cold)	C* (hot) and	Flow rates required at bo but not simultaneously	oth hot and cold taps
Laundry tub	0.2 at 60° 0.2 (cold)	C* (hot) and	Flow rates required at bo but not simultaneously	oth hot and cold taps
Basin	0.1 at 45°	С	Mix hot and cold water t	o achieve 45°C
Shower 0.1 at 42°C		С	Mix hot and cold water t	o achieve 42°C
The flow rates required by	Table 3 shall be ca	bable of being delivered s	imultaneously to the kitchen sin	c and one other <i>fixture</i> .
	g Valve and No s 5.3.1 and 6.12.	minal Pipe Diameters		
		Low pressure (i.e. header tank supply or low pressure)	Low and medium pressure unvented (valve vented) and open vented	Mains pressure
Pressure of water at tempering valve (kPa)		20 - 30	30 - 120	over 300
Metres head (m)		2 – 3	>3 - 12	over 30
Minimum tempering va	lve size	25 mm	20 mm	15 mm
Pipes to tempering valv	/e	25 mm (see Note 3)	20 mm	20 mm (15 mm optional)
				(see Note 1)
Pipes to shower		20 mm	20 mm (see Note 4)	20 mm (see Note 5) (15 mm optional) (see Note 1)
Pipes to sink/laundry (s	ee Note 2)	20 mm	20 mm	15 mm
Pipes to bath (see Note		20 mm	20 mm	15 mm
Pipes to basins (see No Notes: 1. If supplied by separat 2. This table is based on 3. 2 m maximum length 4. 15 mm if dedicated lii 5. 10 mm if dedicated lii 6. Table 3 pipe sizes hav	e pipe from <i>storag</i> maximum pipe le from <i>water heate</i> ne to shower. ne to shower.	ingths of 20 metres. r outlet to tempering val		10 mm d one other <i>fixture</i> .
5.4 Maintenance	oly system sha	all be	COMMENT: Additional isolating valves ma naintenance of <i>storage wate</i>	
provided with an iso	nters the <i>building</i> or at each within a Multi-unit dwelling.		5.4.3 Provision shall be made for draining	
provided with an isol supply pipe enters th	a Multi-unit dv	wenning. 🗖		accordance with
provided with an isol supply pipe enters th	er supply pipe the isolating va	e serves a F alve required	storage water heaters in Figure 7.	

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

COMMENT:

in Table 4.

WATER SUPPLIES

5.4 Water pipe size

5.4.1 Pipe sizing

Pipes shall be sized:


a) To achieve the flow rates given in Table 3, or b) Using the sizes given in Table 4.

Table 3:	Acceptable Flo Paragraph <mark>5.4.1</mark>	w Rates to Sanitary Fixtures	
Sanitary fi	ixture	Flow rate and temperature I/s and °C	How measu
Bath		0.3 at 45°C	Mix hot and o
Sink		0.2 at 60°C* (hot) and 0.2 (cold)	Flow rates re but not simul
Laundry tu	b	0.2 at 60°C* (hot) and 0.2 (cold)	Flow rates re but not simul
Basin		0.1 at 45°C	Mix hot and o
Shower		0.1 at 42°C	Mix hot and o
* The temp	eratures in this tabl	e relate to the temperature of the wate	r used by peopl
Note:			

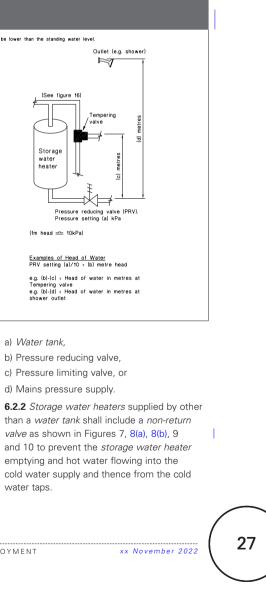
The flow rates required by this table shall be capable of being delivered simultaneously to the kitchen sink and one other fixture.

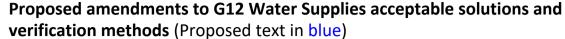
tempering valve (kPa) Metres head (m) 2 - 3 >3 - 12 Minimum tempering valve size 25 mm 20 mm Pipes to tempering valve 25 mm (see Note 3) Pipes to shower 20 mm 20 mm		Low pressure (i.e. header tank supply or low pressure)	Low and pressure (valve v open ve
Minimum tempering valve size 25 mm 20 mm Pipes to tempering valve 25 mm 20 mm (see Note 3) 20 mm 20 mm Pipes to shower 20 mm 20 mm Pipes to sink/laundry (see Note 2) 20 mm 20 mm Pipes to bath (see Note 2) 20 mm 20 mm Pipes to bath (see Note 2) 20 mm 20 mm Pipes to basins (see Note 2) 15 mm 15 mm Notes: 15 mm 15 mm 1. If supplied by separate pipe from storage water heater to a single outlet. 2. This table is based on maximum pipe lengths of 20 metres. 3. 2 m maximum length from water heater outlet to tempering valve. 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower. 5.		20 - 30	30 – 120
Pipes to tempering valve 25 mm (see Note 3) 20 mm Pipes to shower 20 mm 20 mm (see Note 3) Pipes to sink/laundry (see Note 2) 20 mm 20 mm Pipes to bath (see Note 2) 20 mm 20 mm Pipes to basins (see Note 2) 20 mm 20 mm Pipes to basins (see Note 2) 15 mm 15 mm Notes: 1. 15 mm 15 mm 1. If supplied by separate pipe from storage water heater to a single outlet. 2. 3. 2. This table is based on maximum pipe lengths of 20 metres. 3. 2 m maximum length from water heater outlet to tempering valve. 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower.	Metres head (m)	2 – 3	>3 - 12
(see Note 3) Pipes to shower 20 mm 2	Minimum tempering valve size	25 mm	20 mm
(see No Pipes to sink/laundry (see Note 2) 20 mm 20 mm Pipes to bath (see Note 2) 20 mm 20 mm Pipes to basins (see Note 2) 15 mm 15 mm Notes: 1. If supplied by separate pipe from <i>storage water heater</i> to a single outlet. 2. This table is based on maximum pipe lengths of 20 metres. 3. 2 m maximum length from <i>water heater</i> outlet to tempering valve. 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower.	Pipes to tempering valve		20 mm
Pipes to bath (see Note 2) 20 mm 20 mm Pipes to basins (see Note 2) 15 mm 15 mm Notes: 1. 14 supplied by separate pipe from storage water heater to a single outlet. 1. 2. This table is based on maximum pipe lengths of 20 metres. 3. 2 m maximum length from water heater outlet to tempering valve. 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower.	Pipes to shower	20 mm	20 mm (see No t
Pipes to basins (see Note 2) 15 mm 15 mm Notes: 1 If supplied by separate pipe from storage water heater to a single outlet. 2. This table is based on maximum pipe lengths of 20 metres. 3 3. 2 m maximum length from water heater outlet to tempering valve. 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower.	Pipes to sink/laundry (see Note 2)	20 mm	20 mm
 Notes: If supplied by separate pipe from <i>storage water heater</i> to a single outlet. This table is based on maximum pipe lengths of 20 metres. 2 m maximum length from <i>water heater</i> outlet to tempering valve. 15 mm if dedicated line to shower. 10 mm if dedicated line to shower. 	Pipes to bath (see Note 2)	20 mm	20 mm
 If supplied by separate pipe from <i>storage water heater</i> to a single outlet. This table is based on maximum pipe lengths of 20 metres. 2 m maximum length from <i>water heater</i> outlet to tempering valve. 15 mm if dedicated line to shower. 10 mm if dedicated line to shower. 	Pipes to basins (see Note 2)	15 mm	15 mm
	 2. This table is based on maximum pipe 3. 2 m maximum length from <i>water hea</i> 4. 15 mm if dedicated line to shower. 5. 10 mm if dedicated line to shower. 	e lengths of 20 metres. Inter outlet to tempering valv	e.

26

hen sink and one other fixture.

NNOVATION AND EMPLOYMENT

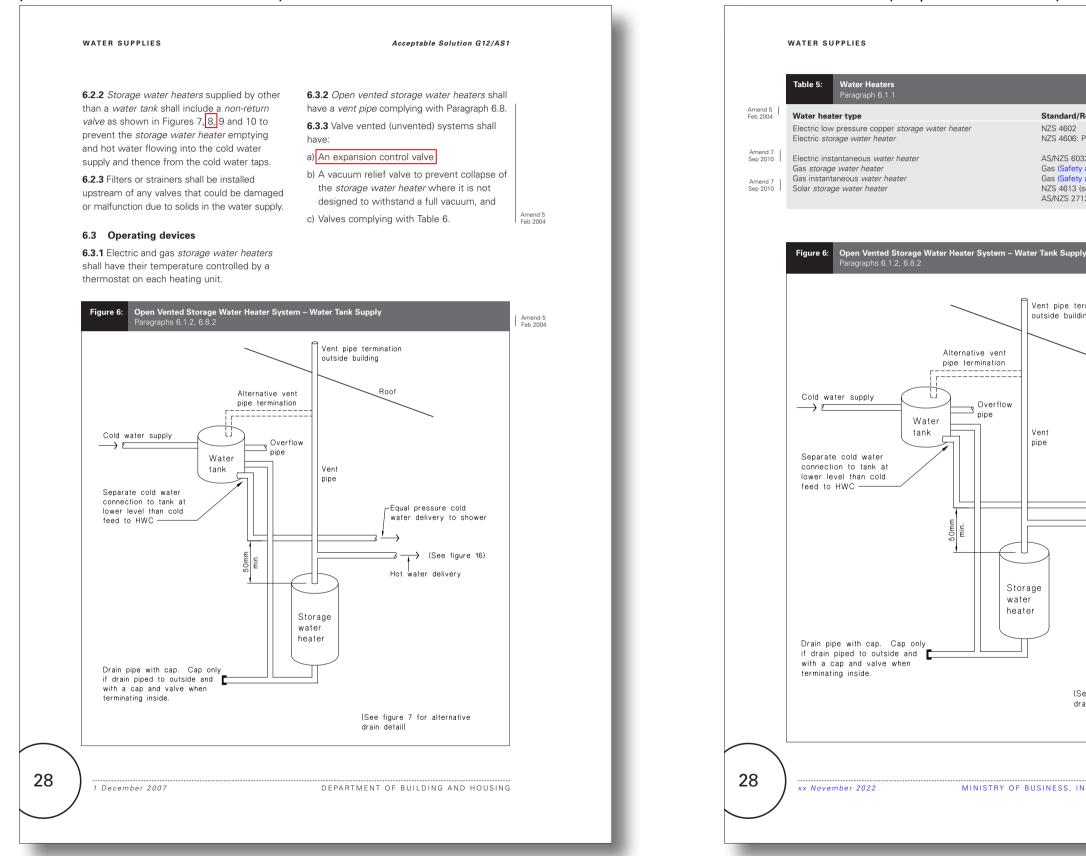

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) Acceptable Solution G12/AS1 WATER SUPPLIES Acceptable Solution G12/AS1 **5.4.2** Where a pressure reducing or pressure limiting valve is installed, the available head Head of Water Available Figure 5: shall be taken as the outlet pressure of the araph 5.3.2 valve plus or minus the pressure to the outlet Note: The working water level can be lower than the standing water level. or valve. Figure 5 illustrates how to determine COMMENT: Outlet (e.g. shower) available head to the outlet or valve orking water level R 5.5 Maintenance facilities 5.5.1 The water supply system shall be Outlet provided with an isolating valve where a (e.g. sh supply pipe enters the *building* or at each Dwelling unit within a Multi-unit dwelling. Figure 7. Head of Water Available Storage (See water fiaure Tempering valve heate Note: The working water level can be lower than the standing water level Tempere Working water leve X Pressure reducing valve (PRV). Pressure setting (a) kPa Storage Outlet water heater (e.g. sho Cold supply (1m head 🛥 10kPa) Examples of Head of Water PRV setting (a)/10 = (b) metre head Examples of Head of Water e.g. (x) = Head of water in metres at shower outlet e.g. (b)-(c) = Head of water in metres at Tempering value e.g. (b)-(d) = Head of water in metres at shower outlet e.g. (y) = Head of water in metres at Tempering valve Note: Valves omitted for clarity. Temper Storage water heater 6.0 Hot Water Supply System 6.2 Water supply to storage water Cold suppl heaters 6.1 Water heaters Examples of Head of Water 6.2.1 Storage water heaters shall be supplied | Amend 5 Feb 2004 6.1.1 Water heaters shall comply with Table 5. e.g. (x) = Head of water in metres at shower outlet with cold water at a pressure not exceeding their working pressure by means of a: 6.1.2 Hot water supply systems are given in e.g. (y) = Head of water in metres at Tempering valve Figures 6 to 11. (Note: Pipe insulation is not a) Water tank, Note: Valves omitted for clarity shown for clarity.) b) Pressure reducing valve, c) Pressure limiting valve, or 6.0 Hot Water Supply System d) Mains pressure supply. 6.1 Water heaters 6.1.1 Water heaters shall comply with Table 5. Table 5: Water Heaters 6.1.2 Hot water supply systems are given in Figures 6 to 11. (Note: Pipe insulation is not Standard/Regulation shown for clarity.) Water heater type Electric low pressure copper storage water heater NZS 4602 NZS 4606: Parts 1, 2 and 3 Electric storage water heater 6.2 Water supply to storage water Amend 9 Feb 2014 Amend 7 Sep 2010 Electric instantaneous water heater AS/NZS 60335.2.35 heaters Gas storage water heater Gas Regulations Gas instantaneous water heater Gas Regulations 6.2.1 Storage water heaters shall be supplied Amend 7 Sep 2010 Solar storage water heater NZS 4613 (see G12/AS2) hird Edition with cold water at a pressure not exceeding AS/NZS 2712 (see G12/AS2) their working pressure by means of a: 27 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 14 February 2014 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

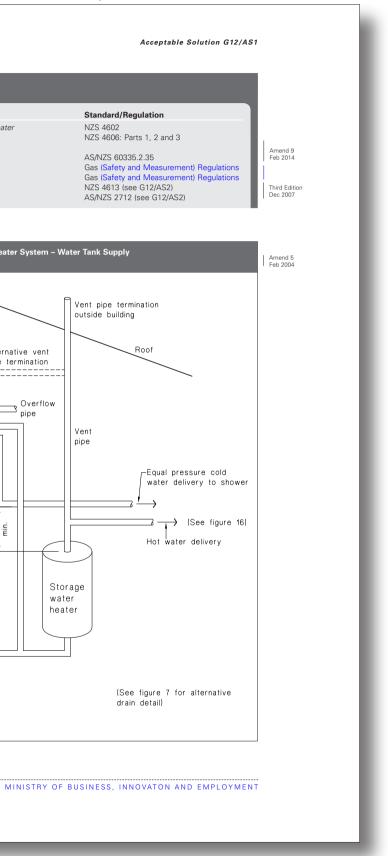

5.5.2 Where the water supply pipe serves a Detached dwelling, the isolating valve required by Paragraph 5.5.1 may be located at the property boundary.

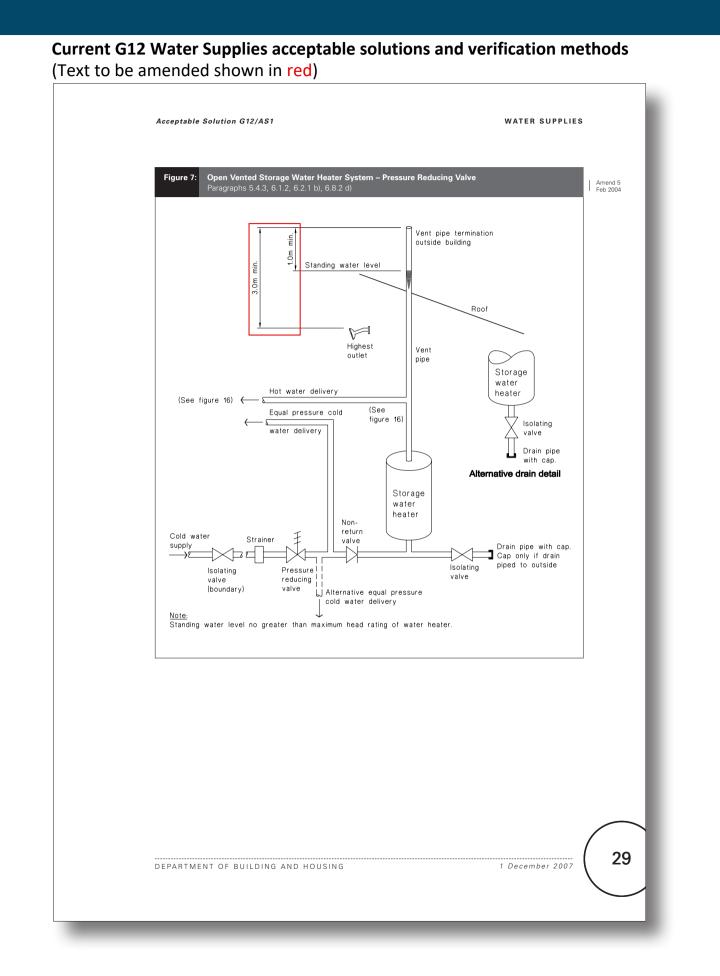
Additional isolating valves may be provided for the maintenance of storage water heaters, valves and components.

5.5.3 Provision shall be made for draining storage water heaters in accordance with

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

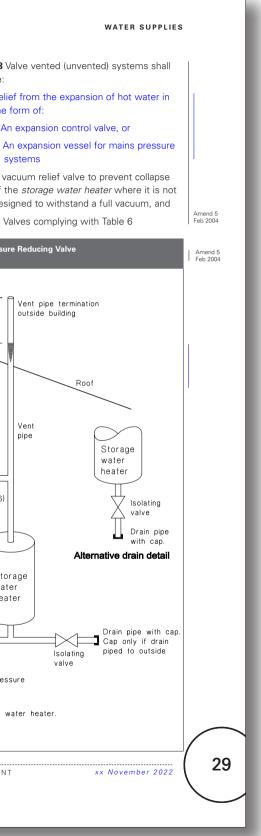

Overflow

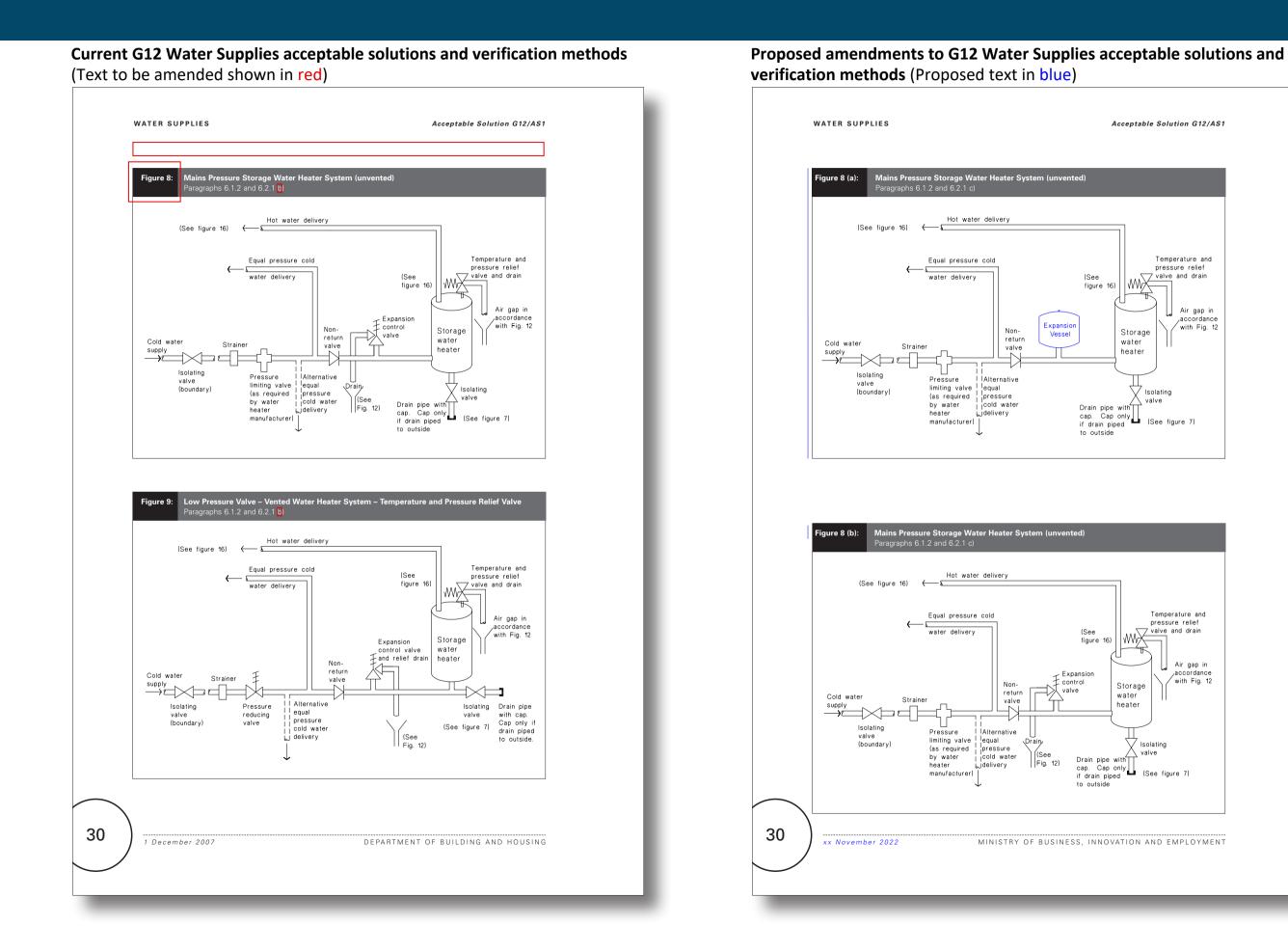

Vent

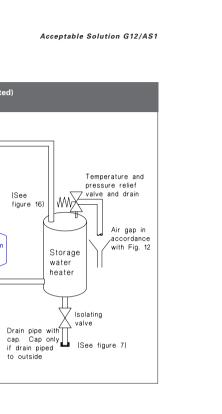

pipe

Storage water heater

pipe

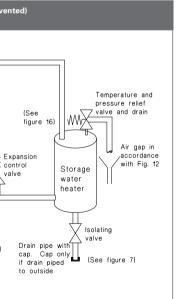


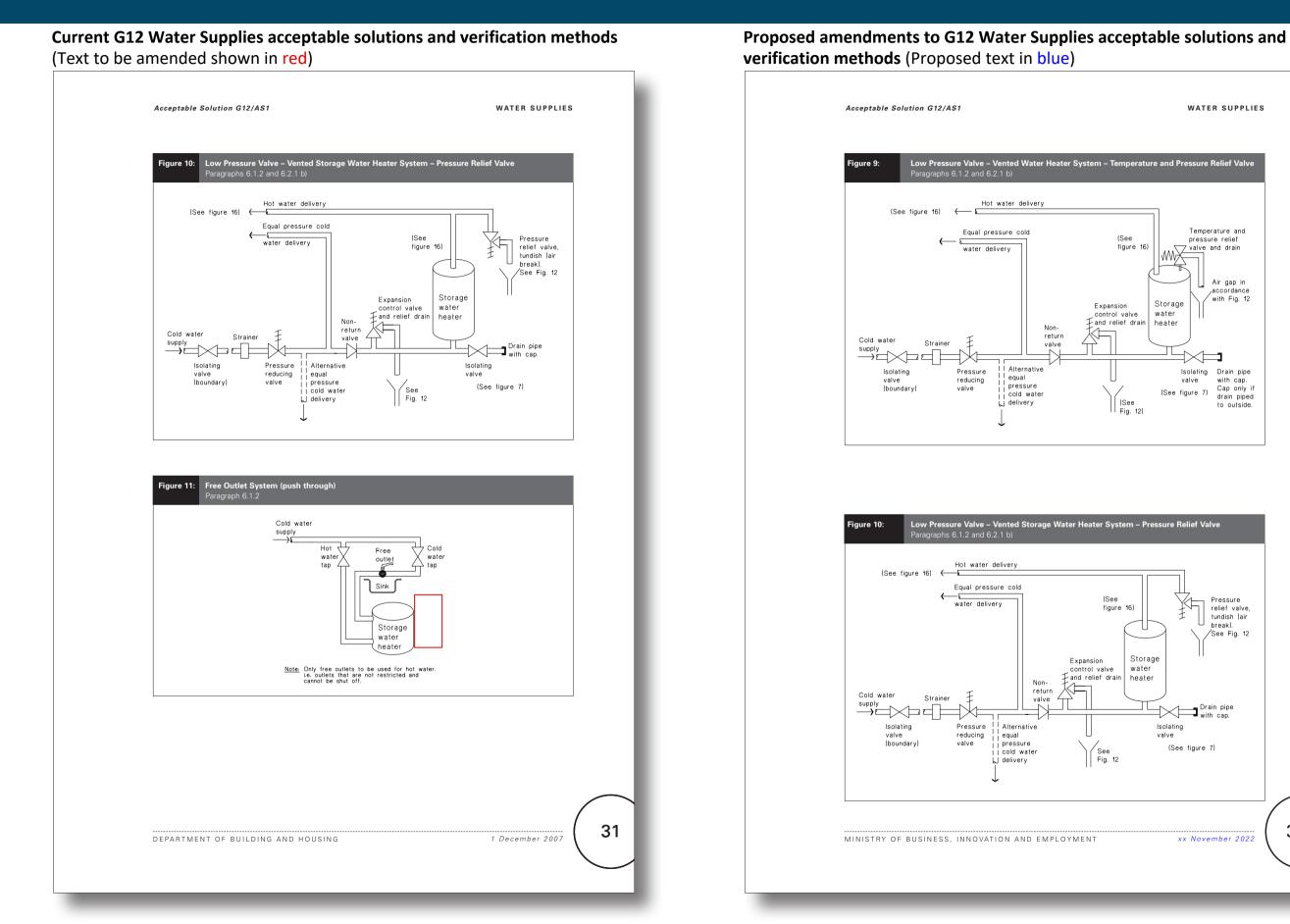


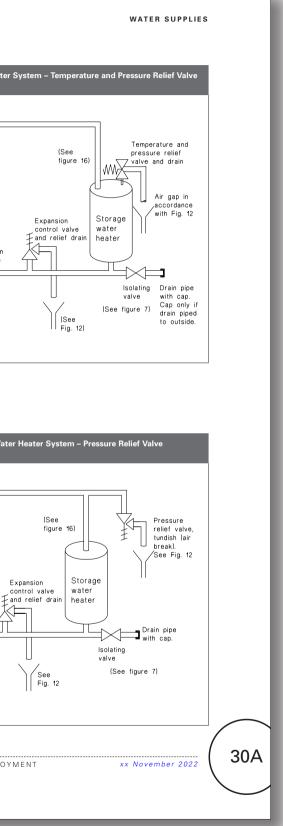


Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

 5.2.3 Filters or strainers shall be installed upstream of any valves that could be damaged or malfunction due to solids in the water supply. 5.3 Operating devices 6.3.1 Electric and gas storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall have a vent pipe complying with Paragraph 6.8. Figure 7: Open Vented Storage Water Heater System - Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) Figure 7: Open Vented Storage Water Heater System - Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) Key (See figure 16) ← Hot water delivery Equal pressure cold (See 	 Acceptable Solution G12/AS1 6.2.3 Filters or strainers shall be installed upstream of any valves that could be damaged or malfunction due to solids in the water supply. 6.3 Operating devices 6.3.1 Electric and gas storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall have a vent pipe complying with Paragraph 6.8. 	6 h- a)
 5.2.3 Filters or strainers shall be installed upstream of any valves that could be damaged or malfunction due to solids in the water supply. 5.3 Operating devices 5.3.1 Electric and gas <i>storage water heaters</i> shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall have a <i>vent pipe</i> complying with Paragraph 6.8. Figure 7: Open Vented Storage Water Heater System - I Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) Figure 7: Open Vented Storage Water delivery Use figure 16) Use figure	 6.2.3 Filters or strainers shall be installed upstream of any valves that could be damaged or malfunction due to solids in the water supply. 6.3 Operating devices 6.3.1 Electric and gas <i>storage water heaters</i> shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall 	h
upstream of any valves that could be damaged or malfunction due to solids in the water supply. here a supply is a storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3. Operating devices 6.3.1 Electric and gas storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall have a vent pipe complying with Paragraph 6.8. heater System - f Figure 7: Open Vented Storage Water Heater System - f Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) if gur f Standing water level if gur f Standing water feelivery if gur f (See figure 16) Hot water delivery Standing water feelivery if gur f Isolating valve if gur feeducing valve Valve if gur feeducing valve Standing water level no greater than maximum head ratin	 upstream of any valves that could be damaged or malfunction due to solids in the water supply. 6.3 Operating devices 6.3.1 Electric and gas <i>storage water heaters</i> shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall 	h
6.3.1 Electric and gas storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall have a vent pipe complying with Paragraph 6.8. Figure 7: Open Vented Storage Water Heater System - I Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) Figure 7: Open Vented Storage Water Heater System - I Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d) Get figure 16) ← Hot water delivery (See figure 16) ← Hot water delivery Cold water strainer valve Isolating valve Isolating valve Non-return valve Isolating valve Note: Standing water level no greater than maximum head ratin	 6.3.1 Electric and gas storage water heaters shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall 	
shall have their temperature controlled by a thermostat on each heating unit. 5.3.2 Open vented storage water heaters shall have a vent pipe complying with Paragraph 6.8. Figure 7: Open Vented Storage Water Heater System - f Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d)	shall have their temperature controlled by a thermostat on each heating unit. 6.3.2 Open vented storage water heaters shall	
Figure 7: Open Vented Storage Water Heaters shall have a vent pipe complying with Paragraph 6.8. Figure 7: Open Vented Storage Water Heater System – I Paragraphs 5.5.3, 6.1.2, 6.2.1 b), 6.8.2 d)		
Cold water Strainer Standing water Level Standing water Non-return Standing Non-return Standing Valve Standing Valve Standing Valve Standing Valve Standing Valve Standing Valve Non-return Valve Standing Pressure Valve Alternative equal Note: Standing water Standing water Standing water Standing water Standing water Standing water Standing Standing		b
Cold water supply Cold water Strainer Usolating Valve		m – P
Cold water supply Cold water Strainer Usolating Valve	et.	
(See figure 16) Cold water supply Lisolating valve lisolating l	E Standing water le	evel
Cold water supply Isolating valve (boundary) Non- return valve loodating valve total Strainer valve valve valve total valve total valve valve total valve valve total total t	3.0m min.	<u> </u>
Cold water supply Isolating valve (boundary) Non- return valve loodating valve total Strainer valve valve valve total valve total valve valve total valve valve total total t		1
(See figure 16) Equal pressure cold (See figure 16) Sec figure 16) Equal pressure cold (See figure 16) Non-return valve cold water delivery valve cold water delivery valve valve cold water delivery valve valv		
Cold water supply Isolating valve (boundary) Non- return valve reducing valve		
Cold water supply Isolating valve (boundary) Non- return valve reducing valve	Equal pressure cold	(See figure
Cold water supply Isolating valve (boundary) Note: Standing water level no greater than maximum head ratin		
Cold water supply Isolating valve (boundary) Note: Standing water level no greater than maximum head ratin		,
Cold water supply Isolating valve (boundary) Note: Standing water level no greater than maximum head ratin		
Cold water supply Isolating valve (boundary) Note: Standing water level no greater than maximum head ratin		
Cold water Strainer valve supply Isolating Pressure Isolating reducing (boundary) valve valve cold water deliv Note: Standing water level no greater than maximum head ratin		
Isolating Pressure valve reducing (boundary) valve Alternative equa cold water deliv <u>Note:</u> Standing water level no greater than maximum head ratin	Cold water Strainer - Valve	1
valve reducing (boundary) valve cold water deliv <u>Note:</u> Standing water level no greater than maximum head ratin		
Note: Note: Standing water level no greater than maximum head ratin	valve reducing	
Standing water level no greater than maximum head ratin		
MINISTRY OF BUSINESS, INNOVATION AND EMPLOY		rating
/INISTRY OF BUSINESS, INNOVATION AND EMPLOY		
MINISTRY OF BUSINESS, INNOVATION AND EMPLOY		
	MINISTRY OF BUSINESS, INNOVATION AND EMP	PLOY

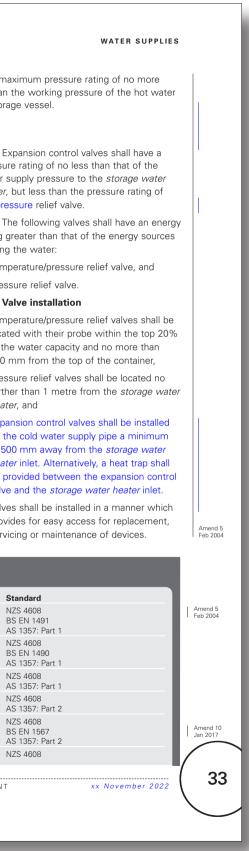

Expans


Vessel


valve

Drain

(See Fig. 12)



Proposed amendments to G12 Water Supplies acceptable solutions and **Current G12 Water Supplies acceptable solutions and verification methods** (Text to be amended shown in red) verification methods (Proposed text in blue) WATER SUPPLIES Free Outlet System (push through) Paragraph 6.1.2 Figure 11: Cold water supply $\longrightarrow \varepsilon$ Hot 🕂 Free water outlet tap Sink Storage water heater Note: Only free outlets to be used for hot wate i.e. outlets that are not restricted and cannot be shut off. 32 xx November 2022 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Acceptable Solution G12/AS1	
Cold water tap	
Relief Valve	
ter.	

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) WATER SUPPLIES Acceptable Solution G12/AS1 Acceptable Solution G12/AS1 WATER SUPPLIES 6.4 Safety devices b) A maximum pressure rating of no more than the working pressure of the hot water 6.4 Safety devices 6.6 Relief valves 6.4.1 Valve vented (unvented) systems shall storage vessel. 6.6.1 All valves shall have flow rates, pressure have in addition to Paragraph 6.3.3 the 6.4.1 Valve vented (unvented) systems shall and *diameter* compatible with the system they following safety devices have in addition to Paragraph 6.3.3 the following safety devices: serve a) Combined temperature/pressure relief valve 6.6.3 Expansion control valves shall have a 6.6.2 Pressure relief valves and expansion a) Combined temperature/pressure relief valve for systems with a working pressure greater control valves shall have: pressure rating of no less than that of the than 120 kPa. for systems with a working pressure water supply pressure to the storage water greater than 120 kPa, a) A flow rate capacity of no less than the rate b) Combined temperature/pressure relief valve heater, but less than the pressure rating of of cold water supply, and or a pressure relief valve for systems with a b) Combined temperature/pressure relief valve the pressure relief valve. working pressure less than 120 kPa, or a pressure relief valve for systems with a b) A maximum pressure rating of no more 6.6.4 The following valves shall have an energy working pressure less than 120 kPa, than the working pressure of the hot water c) An energy cut-off for each heating unit on rating greater than that of the energy sources storage vessel. c) An energy cut-off for each heating unit on gas and electric systems, and heating the water: COMMENT: gas and electric systems, and d) Valves complying with Table 6. a) Temperature/pressure relief valve, and The provision of cold water expansion valves satisfies d) Valves complying with Table 6. 6.4.2 Free outlet (push through) water heaters wo obiective of the New Zealand Building Code: b) Pressure relief valve. 6.4.2 Free outlet (push through) water heaters shall have a relief valve. No relief valve drain . Safety: Protects the pressure relief or combined 6.6.5 Valve installation shall have a relief valve. No relief valve drain is required. temperature/pressure relief valve from blockage due is required. to calcium and other similar deposits where hard a) Temperature/pressure relief valves shall be 6.5 Temperature control devices water is frequently discharged through the valve. located with their probe within the top 20% 6.5.1 Electric thermostats and energy cut-off 2. Energy Efficiency (NZBC H1): Cold water instead of of the water capacity and no more than 6.5 Temperature control devices Third Edition Dec 2007 devices shall comply with NZS 6214 or AS 1308. hot water is discharged to waste during the frequent 150 mm from the top of the container. 6.5.1 Electric thermostats and energy cut-off warm up cycles. 6.5.2 Energy cut-off devices shall be designed to: Third Edition Dec 2007 b) Pressure relief valves shall be located no devices shall comply with NZS 6214 or AS 1308. a) Be reset manually, and further than 1 metre from the storage water 6.5.2 Energy cut-off devices shall be designed 6.6.3 Expansion control valves shall have a b) Disconnect the energy supply before the heater, and to: pressure rating of no less than that of the water temperature exceeds 95°C. c) Expansion control valves shall be installed water supply pressure to the storage water a) Be reset manually, and 6.6 Relief valves and expansion vessels on the cold water supply pipe a minimum heater, but less than the pressure rating of Amend 5 Feb 2004 b) Disconnect the energy supply before the of 500 mm away from the storage water the relief valve. Amend 5 Feb 2004 6.6.1 All valves and expansion vessels shall water temperature exceeds 95°C. *heater* inlet. Alternatively, a heat trap shall have flow rates, pressure and *diameter* be provided between the expansion control compatible with the system they serve. valve and the storage water heater inlet. 6.6.2 Pressure relief valves and expansion Storage Water Heater Valves Paragraph 6.3.3 c) and 6.4.1 d) Table 6 d) Valves shall be installed in a manner which control valves shall have: provides for easy access for replacement, a) A flow rate capacity of no less than the rate Standard Valve type servicing or maintenance of devices. Amend 5 Feb 2004 of cold water supply, and NZS 4608 Amend 5 Feb 2004 Cold water expansion valves Amend 7 Sep 2010 BS EN 1491 AS 1357: Part 1 Table 6: Storage Water Heater Valves Temperature/pressure relief valve N7S 4608 Amend 7 Sep 2010 BS EN 1490 AS 1357: Part 1 Valve type Standard NZS 4608 Non-return valves NZS 4608 Cold water expansion valves Amend 7 Sep 2010 AS 1357: Part 1 BS FN 1491 NZS 4608 AS 1357: Part 1 Vacuum relief valves AS 1357: Part 2 Temperature/pressure relief valve NZS 4608 Amend 7 Sep 2010 BS EN 1490 Pressure reducing valves and pressure limiting valves NZS 4608 Amend 10 Jan 2017 BS EN 1567 AS 1357: Part AS 1357: Part 2 NZS 4608 Non-return valves Pressure relief valves NZS 4608 AS 1357 Part NZS 4608 Vacuum relief valves AS 1357: Part 2 Pressure reducing valves and pressure limiting valves N7S 4608 BS EN 1567 AS 1357: Part 2 NZS 4608 Pressure relief valves 32 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 1 January 2017 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT xx November 2022

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) WATER SUPPLIES Acceptable Solution G12/AS1 6.6.6 There shall be no valve or restriction Alternatively, a heat trap shall be provided between the relief valve and the storage water between the expansion vessel and the Amend 5 Feb 2004 heater mains pressure storage water heater inlet, e) Be installed in a manner which provides for 6.6.7 Expansion Vessels easy access for replacement, servicing and Where an expansion vessel is provided to maintenance, and manage the effects of thermal expansion in a f) Be adequately supported or restrained to mains pressure *storage water heater* system, the expansion vessel shall: prevent damage at the point of connection of the vessel to the pipework if the vessel a) Comply with BS EN 13831 and be suitable is subject to external forces. for use with potable water in accordance 6.6.8 Expansion Vessel Sizing with the provisions of Paragraph 2.0, The minimum capacity of an expansion vessel b) Be sized to ensure that the maximum shall be calculated from the formula: system pressure does not exceed the $Ve = Vs \times n / AF$ working pressure of the hot water storage vessel and the working pressure of Where expansion vessel itself, Ve = minimum capacity of expansion vessel (litre) c) Be pre-charged to a pressure matching Vs = volume of hot water storage (litre) the water supply pressure to the mains η = expansion factor (from Table 7) pressure storage water heater, AF = (P2 - P1)/(P2 + 101)d) Be installed on the cold water supply pipe a P1 = water supply pressure (kPa, typically the minimum of 500 mm away from the mains setting of the pressure limiting or pressure pressure storage water heater inlet. reducing valve) $P2 = 0.85 \times TPR$ valve setting (kPa) Table 7: Table of Expansion Factors (Water supplied at 0° to 20°C) Thot* 60 65 70 75 80 0.017 0.019 0.022 0.025 0.028 η *Thot = Storage water heater thermostat setting (°C) COMMENT: 1. The table below provides examples of expansion vessel sizes for a mains pressure storage water heater system calculated using this method, for a situation in which: P1 = 500 kPa P2 = 850 kPa T_{hot} (°C) Storage water heater thermostat setting 70 75 65 80 Ve Minimum Expansion Vessel Capac Vs (litre) 135 6 7 8 9 10 180 8 10 11 12 14 250 11 13 15 17 19 300 14 16 18 20 23

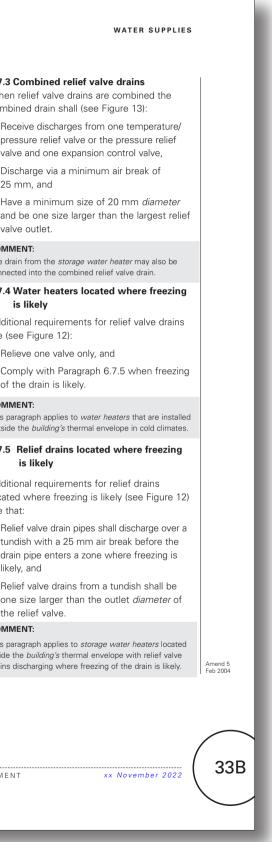
85	90	95
0.031	0.035	0.038

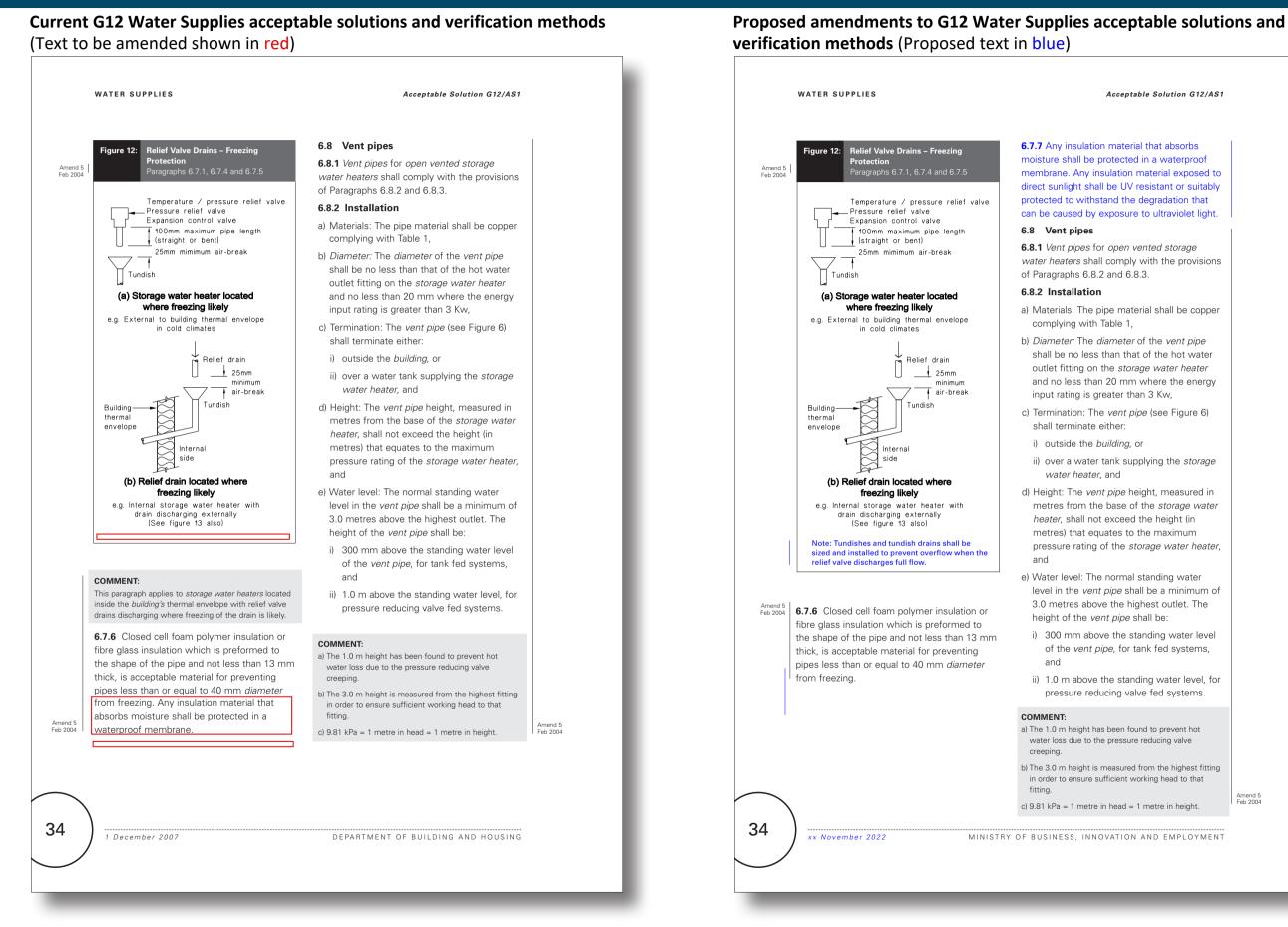
_						
85	90	95				
ity (litre)						
12	13	14				
15	17	19				
21	24	26				
26	28	31				
ay be less than its total volume.						

3. AS/NZS 3500.4 contains alternative provisions for calculating the size of expansion vessels, and is referenced as

2. Depending on the vessel design its capacity (maximum acceptance volume) m

an acceptable solution in G12/AS3.


xx November 2022


33A

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G12/AS1	WATER SUPPLIES			Acceptable Solution G12/AS1
 6.6.4 The following valves shall have an energy rating greater than that of the energy sources heating the water: a) Temperature/pressure relief valve, and b) Pressure relief valve. 6.6.5 Valve installation a) Temperature/pressure relief valves shall be located with their probe within the top 20% of the water capacity and no more than 150 mm from the top of the container, b) Pressure relief valves shall be located no further than 1 metre from the <i>storage water heater</i>, and c] Valves shall be installed in a manner which provides for easy access for replacement, servicing or maintenance of devices. 6.6.6 There shall be no valve or restriction 	 g) Be connected to a relief valve in accordance with the valve manufacturer's specification, h) Comply with Paragraph 6.7.3 when relief valve drains are combined, and i) Comply with Paragraphs 6.7.4 and 6.7.5 when freezing is likely. 6.7.3 Combined relief valve drains When relief valve drains are combined the combined drain shall (see Figure 13): a) Receive discharges from one temperature/ pressure relief valve or the pressure relief valve and one expansion control valve, b) Discharge via a minimum air break of 25 mm, and c) Have a minimum size of 20 mm <i>diameter</i> and be one size larger than the largest relief valve outlet. 			 6.7 Relief valve drains 6.7.1 Relief valve drains (see Figures 12 and 13) shall be fitted to: a) Temperature/pressure relief valves, b) Pressure relief valves, and c) Expansion control valves. 6.7.2 Relief valve drains shall: a) Be of copper pipe, b) Have no restrictions or valves, c) Have a continuous fall from the relief valve to the outlet, d) Discharge in a visible position which does not present a hazard or damage to other <i>building elements</i> (except when used in association with <i>free outlet storage water heaters</i>),
between the relief valve and the storage water heater.	COMMENT: The drain from the <i>storage water heater</i> may also be connected into the combined relief valve drain.			COMMENT: For example, discharging via an air break into an external gully trap, or via an air break into a tundish within a cupboard.
 6.7 Relief valve drains 6.7.1 Relief valve drains (see Figures 12 and 13) shall be fitted to: a) Temperature/pressure relief valves, b) Pressure relief valves, and c) Expansion control valves. 6.7.2 Relief valve drains shall: 	 6.7.4 Water heaters located where freezing is likely Additional requirements for relief valve drains are (see Figure 12): a) Relieve one valve only, and b) Comply with Paragraph 6.7.5 when freezing of the drain is likely. 			 e) Have a minimum <i>diameter</i> of the same size as the valve outlet, f) Have the number of changes in direction plus the length of the relief drain (in metres not exceeding 12, COMMENT: For example: 7 metres of pipe allows the total number
a) Be of copper pipe,b) Have no restrictions or valves,c) Have a continuous fall from the relief valve to the outlet,d) Discharge in a visible position which does not present a hazard or damage to other	 COMMENT: This paragraph applies to <i>water heaters</i> that are installed outside the <i>building's</i> thermal envelope in cold climates. 6.7.5 Relief drains located where freezing is likely Additional requirements for relief drains located where freezing is likely. 		Amend 5	 of bends to be 5. g) Be connected to a relief valve in accordance with the valve manufacturer's specification, h) Comply with Paragraph 6.7.3 when relief valve drains are combined, and i) Comply with Paragraphs 6.7.4 and 6.7.5
 building elements (except when used in association with free outlet storage water heaters), e) Have a minimum diameter of the same size as the valve outlet, f) Have the number of changes in direction plus the length of the relief drain (in metres) not exceeding 12 	 located where freezing is likely (see Figure 12) are that: a) Relief valve drain pipes shall discharge over a tundish with a 25 mm air break before the drain pipe enters a zone where freezing is likely, and b) Relief valve drains from a tundish shall be one size larger than the outlet <i>diameter</i> of 		Amend 5 Feb 2004	when freezing is likely.
Amend 5 Feb 2004 For example: 7 metres of pipe allows the total number of bends to be 5.	the relief valve.	Amend 5 Feb 2004		
DEPARTMENT OF BUILDING AND HOUSING	1 December 2007	00		MINISTRY OF BUSINESS, INNOVATION AND E

Acceptable Solution G12/AS1

6.7.7 Any insulation material that absorbs moisture shall be protected in a waterproof membrane. Any insulation material exposed to direct sunlight shall be UV resistant or suitably protected to withstand the degradation that can be caused by exposure to ultraviolet light.

6.8.1 Vent pipes for open vented storage water heaters shall comply with the provisions of Paragraphs 6.8.2 and 6.8.3.

a) Materials: The pipe material shall be copper

b) Diameter: The diameter of the vent pipe shall be no less than that of the hot water outlet fitting on the storage water heater and no less than 20 mm where the energy input rating is greater than 3 Kw,

c) Termination: The *vent pipe* (see Figure 6)

i) outside the building, or

ii) over a water tank supplying the storage

d) Height: The vent pipe height, measured in metres from the base of the storage water heater, shall not exceed the height (in metres) that equates to the maximum pressure rating of the storage water heater.

e) Water level: The normal standing water level in the vent pipe shall be a minimum of 3.0 metres above the highest outlet. The height of the vent pipe shall be:

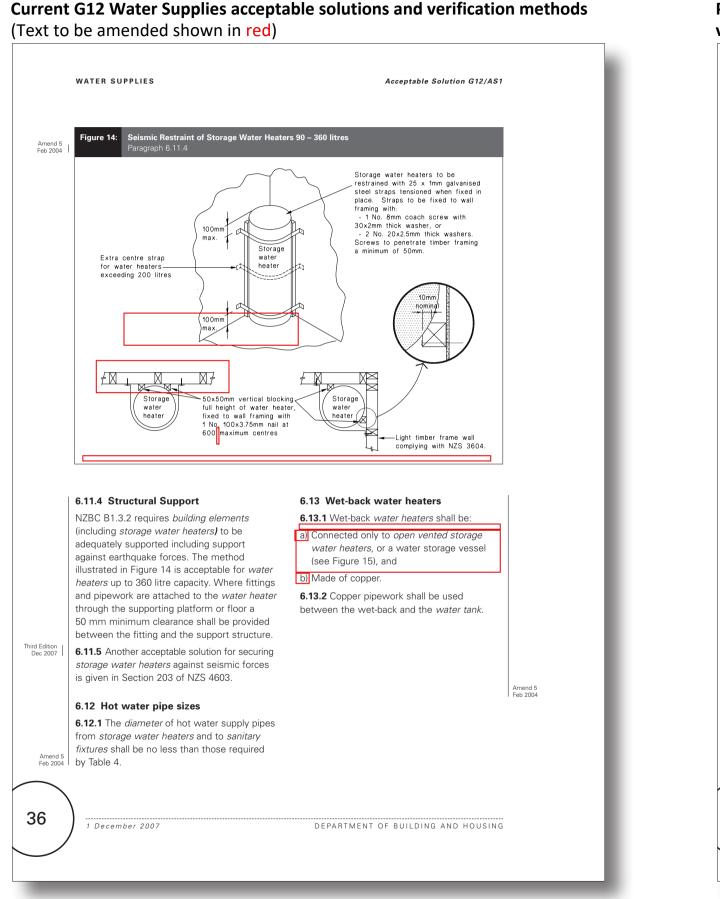
i) 300 mm above the standing water level of the vent pipe, for tank fed systems,

ii) 1.0 m above the standing water level, for pressure reducing valve fed systems.

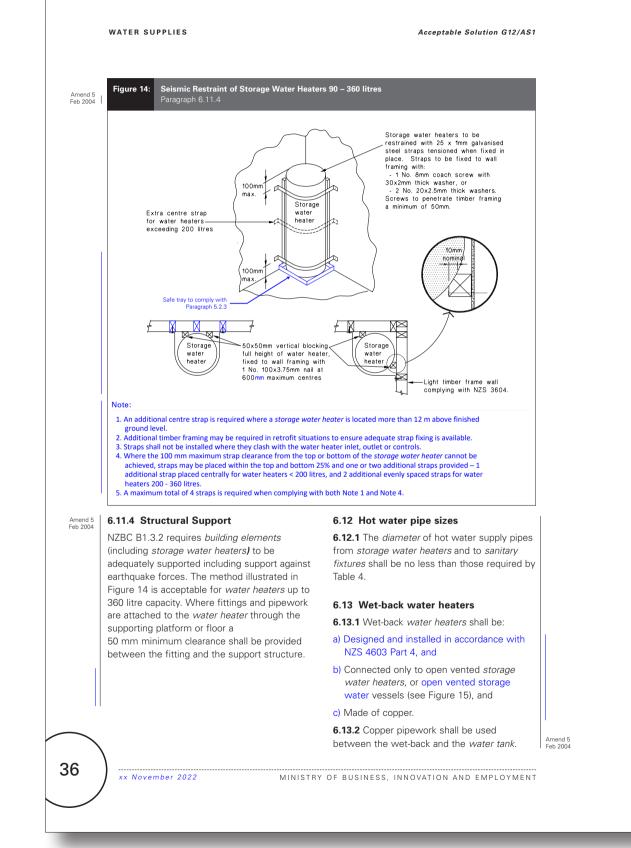
a) The 1.0 m height has been found to prevent hot water loss due to the pressure reducing valve

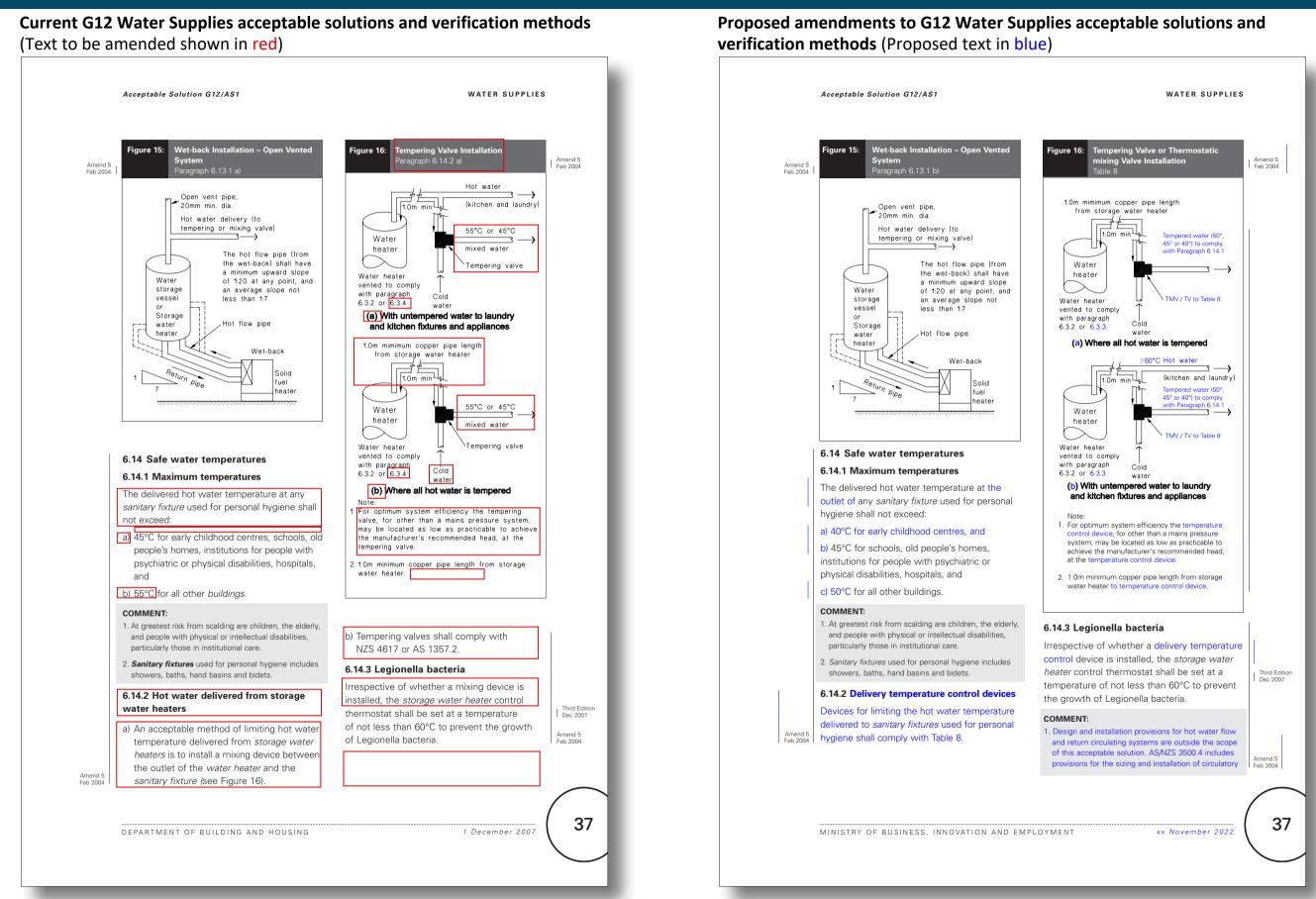
b) The 3.0 m height is measured from the highest fitting in order to ensure sufficient working head to that

c) 9.81 kPa = 1 metre in head = 1 metre in height.


Amend 5 Feb 2004

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue) Acceptable Solution G12/AS1 WATER SUPPLIES Acceptable Solution G12/AS1 Relief Valve Drains – Combined igure 13: **Relief Valve Drains – Combined** Paragraphs 6.7.1, 6.7.2 f) and 6.7.3 igure 13: Relief drain maximum Con length without air break to comply with spec Relief drain maximum Connection to valve manu length without air break to comply with specified by valve paragraph 6.7.2(f) Figur manufacturer. Refe locat paragraph 6.7.2(f) Figure 12 for Relief drain size of freez locations where largest valve outlet Relief drain size of freezing is likely connection largest valve outlet connection Expansion Tundish control valve Tundish -Discharge to a relief drain visible position Discharge to a which does not 25mm visible position present a hazard which does not or damage to building elements $\langle P \rangle$ present a hazard or damage to E building elements Storage water heater drain fall C Combined relief Co with isolating valve drain size one fall Combined relief valve. size larger then valve drain size one (Alternative largest relief valve size larger then method.) outlet. Minimum size Amend 5 Feb 2004 largest relief valve (Se of 20mm outlet. Minimum size Amend 5 Feb 2004 (See figure 12 also) of 20mm Note: Tundishes and tundish drains s installed to prevent overflow when th discharges full flow. 6.8.3 Insulation 6.11 6.8.3 Insulation 6.11 Water heater installation a) Where the *vent pipe* is likely to be 6.11 a) Where the *vent pipe* is likely to be 6.11.1 Water heaters shall be installed in subjected to freezing, it shall be insulated accor subjected to freezing, it shall be insulated accordance with the manufacturer's instructions. between the top of the storage water 6.11. between the top of the storage water heater, and a point no less than 300 mm 6.11.2 Where heating units, sacrificial anodes, heater, and a point no less than 300 mm thern above the normal standing water level in the thermostats, pipework connections, valves, or oth above the normal standing water level in vent pipe. or other accessories being components of a stora the vent pipe. storage water heater are installed, they shall b) Insulation material is to comply with be ac b) Insulation material is to comply with be accessible for inspection, maintenance and Paragraphs 6.7.6 and 6.7.7. remo Paragraph 6.7.6. removal 6.11 6.11.3 Storage water heaters shall have: Third Edition Dec 2007 6.9 Another acceptable solution for a) Sa 6.9 Another acceptable solution for Third Edition Dec 2007 the installation of open vented a) Safe trays complying with Paragraph 5.2.3 the installation of open vented storage water heaters Amend 10 Jan 2017 storage water heaters 6.9.1 NZS 4603 is an acceptable solution b) Co b) Connections compatible with the pipe 6.9.1 NZS 4603 is an acceptable solution m for open vented low pressure storage water material used, and for open vented low pressure storage water *heaters*, but may exceed the performance c) Dr *heaters*, but may exceed the performance c) Drain pipes (for every storage water heater criteria of NZBC G12. of criteria of NZBC G12. of more than 45 litres capacity) which: i) have a conveniently located isolating Third Edition Dec 2007 6.10 Another acceptable solution for 6.10 Another acceptable solution for valve, and terminate with a cap or plug Third Edition Dec 2007 the installation of unvented (valve the installation of unvented (valve suitably located to easily empty the vented) storage water heaters. vented) storage water heaters. vessel for maintenance, or 6.10.1 NZS 4607 is an acceptable solution 6.10.1 NZS 4607 is an acceptable solution ii) terminate outside the *building* with a Amend 5 Feb 2004 for unvented (valve vented) storage water Amend 5 Feb 2004 for unvented (valve vented) storage water cap only. *heaters*, but may exceed the performance Amend 5 Feb 2004 heaters, but may exceed the performance criteria of NZBC G12. criteria of NZBC G12. 35 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 1 January 2017 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYME


WATER SUPPLIES	- 1
	- 1
ection to valve ified by valve facturer. Refer e 12 for ions where ing is likely Expansion control valve relief drain 25mm Storage water heater drain with isolating valve. (Alternative method.) e figure 12 also)	
shall be sized and ne relief valve	
Water heater installation 1 Water heaters shall be installed in rdance with the manufacturer's instructions. 2 Where heating units, sacrificial anodes, mostats, pipework connections, valves, her accessories being components of a <i>ige water heater</i> are installed, they shall accessible for inspection, maintenance and wal.	
3 <i>Storage water heaters</i> shall have: afe trays complying with Paragraph 5.2.3	
connections compatible with the pipe aterial used, and rain pipes (for every <i>storage water heater</i> more than 45 litres capacity) which: have a conveniently located isolating valve, and terminate with a cap or plug suitably located to easily empty the vessel for maintenance, or	Amend 10 Jan 2017
terminate outside the <i>building</i> with a cap only.	Amend 5 Feb 2004
NT xx November 2022	35
	_


i)

ii)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

	WATER SUPPLIES		А	cceptable Solution G12/AS
	Table 7: Water Supply Pipew Paragraph 7.1.3	rork Support Spacing		
	Pipe material	Pipe diameter (mm)	Maximum distance Vertical pipe	between supports (m) Graded and horizontal pipe
	Copper	10 – 15 20 – 25	1.5 2.0	1.2 1.5
	Galvanised steel	15 – 20	2.0	1.5
	uPVC	25 15 – 20	3.0 2.0	2.5
		25	2.4	1.2
	Polyethylene and polybutylene (cold water supply)	15 – 20 25	1.5 1.8	0.75 0.9
	Polybutylene (hot water supply)	15 - 18	1.0	0.6
	Note:	20 – 22	1.4	0.7
	The spacing for these pipe materials i	is based on the pipes being	located within the building s	structure.
Amend 5 Feb 2004	6.14.4 The water temperatures		7.1.3 Support space	ng
		at loss than 60°C		supply pipework shall b
				t centres of no greater able 7.
	Alternative methods of controlling Legionella within hot		7.1.4 Anchor points	
	water circulating or warm water syst chlorine disinfection, UV sterilisation		Anchor points shall b	
	pasteurisation combined with system		a) Seal ring joints are	
	a documented maintenance program	nme.		le to resist the thrust
			imposed by the w	
			7.2 Protection fro	om freezing
			7.2.1 Where there i	s the likelihood of
dition			-	d <i>water supply systems</i> the following manner:
2007	7.0 Installation Methods		 a) Piping outside of t envelope shall be 	he <i>building</i> thermal
	7.0.1 Water supply systems sl to comply with the durability r NZBC B2.		 b) Piping buried in th insulated or install by freezing, and 	ed below a level affecte
	7.1 Pipe supports		c) Storage water heat insulated (see Figure 1)	<i>ater vent pipes</i> shall be ure 17).
	7.1.1 Pipes and their supports electrochemically compatible.	shall be	7.2.2 In climates wh	ere freezing temperature of greater than 24 hours a
	7.1.2 Except where anchor poir the pipes shall be installed and manner which permits thermal	supported in a		lve is required in addition
	\	*		
8			DEPARTMENT OF	BUILDING AND HOUSI

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue) WATER SUPPLIES

 heated water reticulated systems in G12/AS3. 2. The return water temperature fro and return circulating system sha not less than 55°C. 3. The design and installation of hor and return circulating systems sh for pipework heat losses and the 	om a hot water flow Il be maintained at t water flow would account	the minimum st in Paragraph 6.1 temperature of 9 4. Alternative meth hot water circula outside the scop however these to UV sterilisation,
temperature drop. For example a		combined with s documented ma
Table 8: Hot water delivery te Paragraph 6.14.2 and fe	mperature control de ⁼igure 16	vices
Device type		St
Thermostatic mixing valve (TM	V)	AS BS BS
Thermostatically controlled tap		AS
Tempering valve (TV)		AS
Acceptable for compliance with	h 16.14.1c) only	NZ
Temperature limited water hea	ter	AS
Acceptable for compliance with	h 16.14.1c) only	
 Temperature control device mail A temperature limited water he sanitary fitures that are connect limit of 50°C is proposed. Each thermostatic mixing valve water supply. These devices mailer supply. These devices mailer supply are found on the same supply. Delivery temperature control de on maintenance, refer to AS 40 	ater is a water heater the ed to the water heater or tempering valve sha ay be fitted separately of ethods of limiting hot w wices require routine m	nat limits the water ter and used primarily for II have a non-return va or form an integral part vater delivery tempera
Table 9: Water Supply Pipewor Paragraph 7.1.3	ork Support Spacing	
Pipe material	Pipe diameter (mm)) Maximum dist Vertical pipe
Copper	10 - 15	1.5
Galvanised steel	20 – 25 15 – 20 25	2.0 2.0 3.0
uPVC	15 – 20 25	2.0 2.4
Polyethylene and polybutylene (cold water supply)	15 – 20 25	1.5 1.8
Polybutylene (hot water supply)	15 – 18 20 – 22	1.0 1.4
Note: The spacing for these pipe materials is		
xx November 2022		OF BUSINESS, IN

Amend 5 Feb 2004

38

Acceptable Solution G12/AS1

storage temperature of 60°C 14.3 would produce a return 55°C.

thods of controlling Legionella within lating or warm water systems are pe of this acceptable solution, may include chlorine disinfection, , high temperature pasteurisation system flushing as part of a aintenance programme.

tandard

S 4032.1 S EN 1287 (Low pressure) S EN 1111 (High pressure) S 4032.4 S 4032.2 ZS 4617 S 3498

ragraph 2.0.

emperatures at the outlet from situations where a temperature

valve fitted to the hot and cold rt of the valve.

ature using a thermostatic mixing

rmance testing. For information

tance between supports (m) Graded and horizontal pipe 1.2 1.5 1.5 2.5 1.0 1.2 0.75 0.9 0.6

0.7

ilding structure.

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G12/AS1

7.0 Installation Methods

7.0.1 Water supply systems shall be installed to comply with the durability requirements of NZBC B2.

7.1 Pipe supports

7.1.1 Pipes and their supports shall be electrochemically compatible.

7.1.2 Except where anchor points are necessary, the pipes shall be installed and supported in a manner which permits thermal movement.

7.1.3 Support spacing

Above ground water supply pipework shall be securely supported at centres of no greater than those given in Table 9.

a) Seal ring joints are used, and

imposed by the water pressure.

7.2.1 Where there is the likelihood of freezing, hot and cold water supply systems shall be protected in the following manner:

envelope shall be insulated,

by freezing, and

c) Storage water heater vent pipes shall be insulated (see Figure 17).

7.2.2 In climates where freezing temperatures are likely for a period of greater than 24 hours an expansion control valve is required in addition to vent pipe insulation (see Figure 17).

7.3 Unintentional heating

7.3.1 Cold water supply systems shall be installed to avoid the likelihood of becoming unintentionally heated.

tempe scaldi To redu water a) avo to s b) loca insu thro

7.1.4 Anchor points

Anchor points shall be provided where:

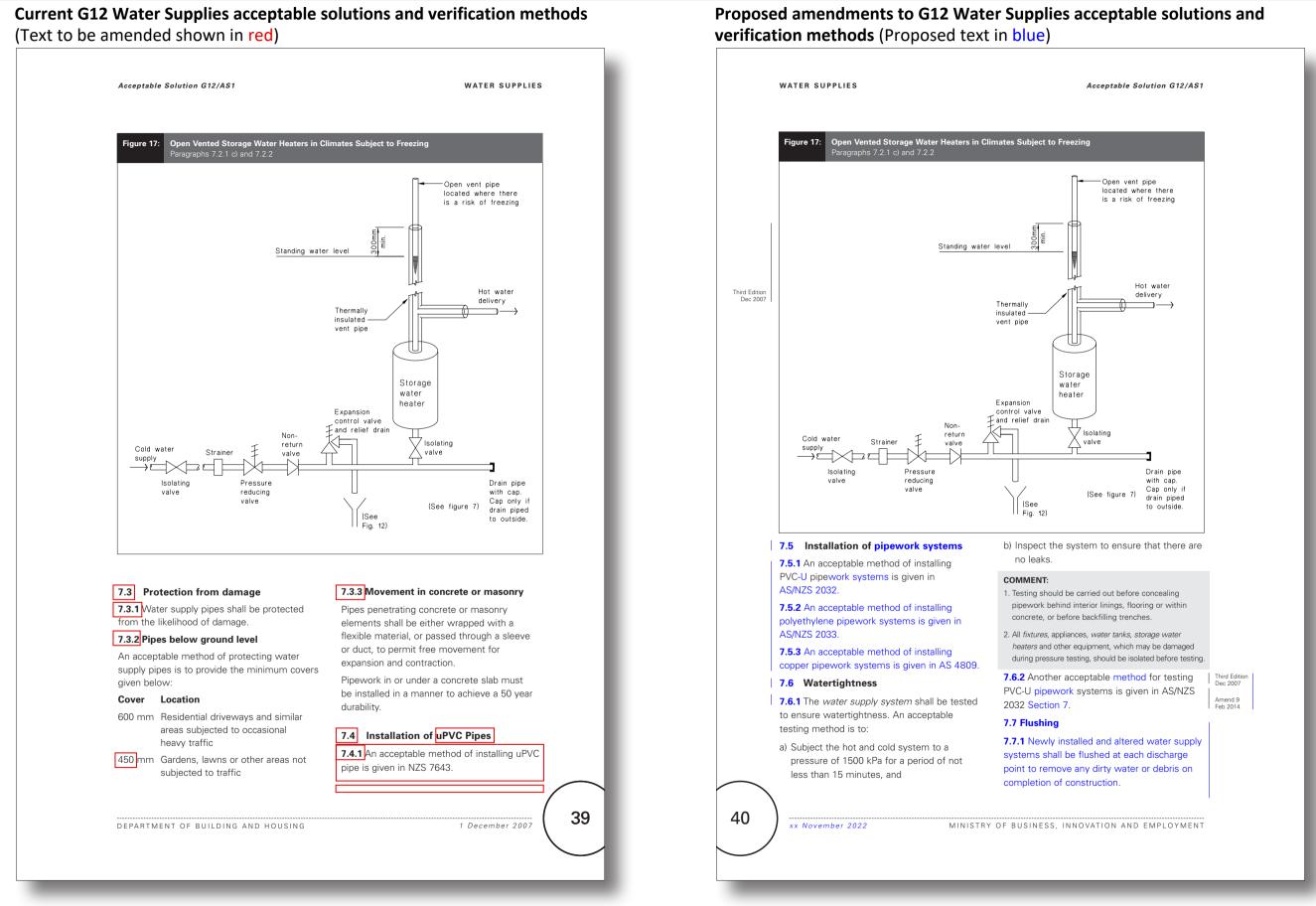
7.4

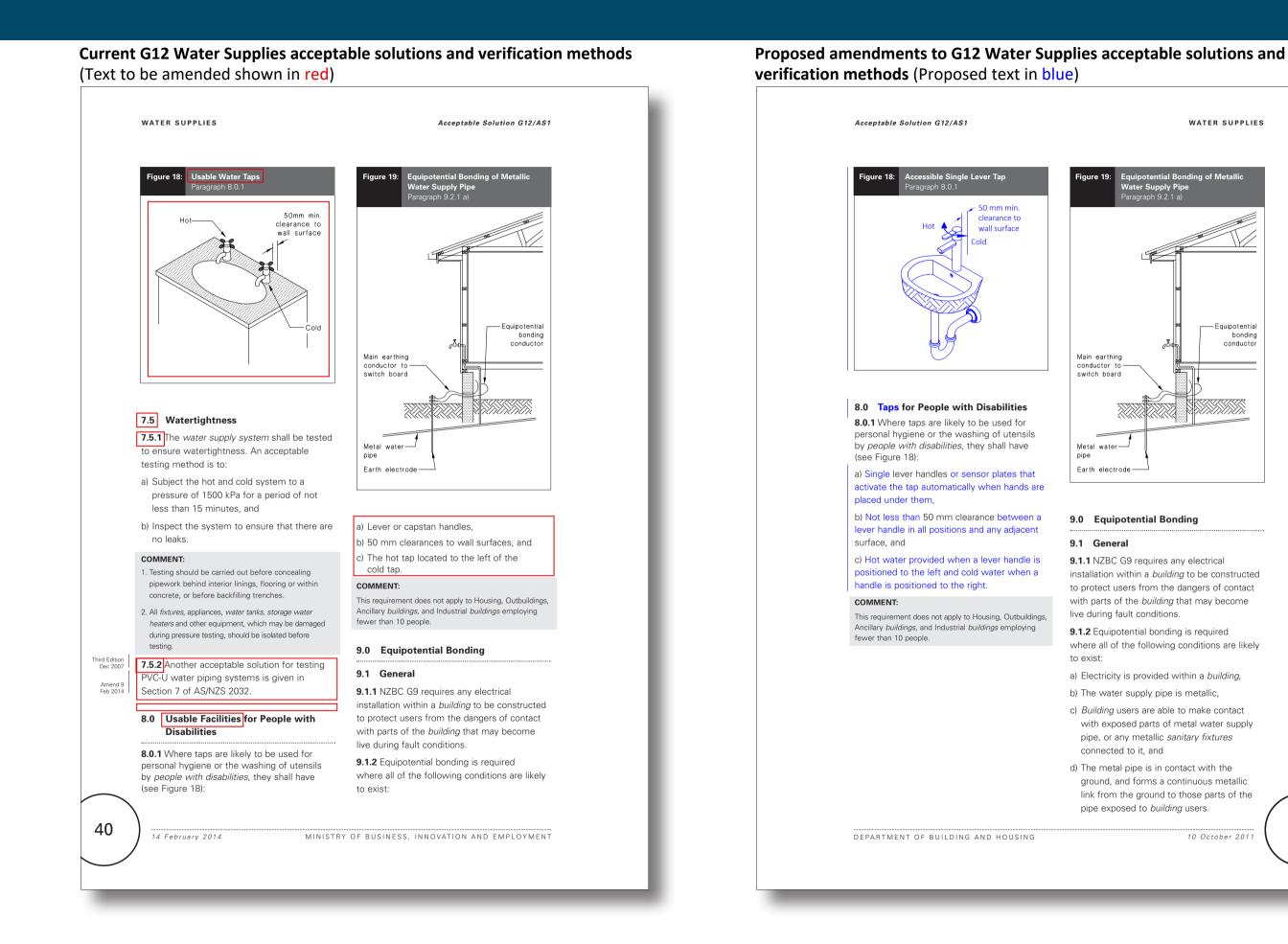
b) The joint is not able to resist the thrust

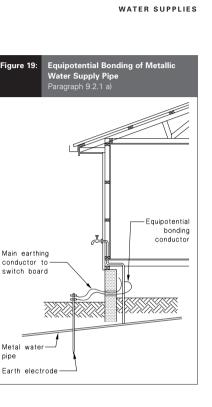
7.2 Protection from freezing

a) Piping outside of the *building* thermal

b) Piping buried in the ground shall be insulated or installed below a level affected


7.4.3 Pipes

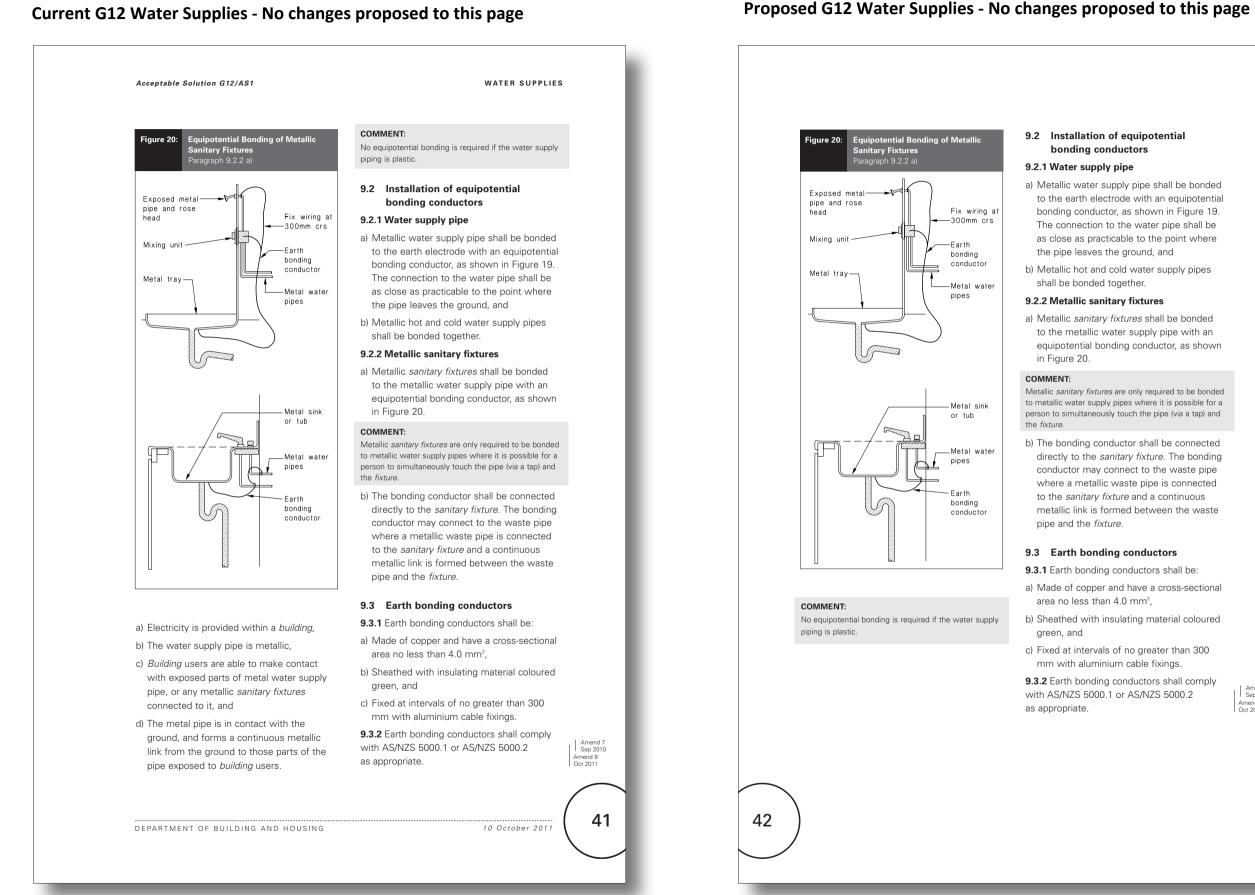

eleme flexible or due expan Pipew be ins durab


MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

WATER SUPPLIES

temperatu during sun potential te pose a haz temperatu	talled in a location subjected to high talled in a location subjected to high mer), cold water supply systems have the become unintentionally heated. This can ard as the cold water supply may reach res in excess of 45°C, increasing the risk of		
To reduce	nd the growth of Legionella bacteria. the likelihood of unintentional heating of cold ices, consideration should be given to—		
a) avoiding	long runs of pipework in locations exposed heat gain,		
b) locating insulatin	pipework within ceiling spaces under any g material laid for restricting heat losses ceilings, and/or		
c) insulatir	g the pipework.		
services in temperatu	of unintentional heating of cold water known areas of extreme summer res may also assist in reducing water usage awing off of water which has become y heated.		
7.4 Pro	otection from damage		
	ter supply pipes shall be protected likelihood of damage.		
7.4.2 Pip	es below ground level		
	otable method of protecting water pes is to provide the minimum covers low:		
Cover	Location		
600 mm	Residential driveways and similar areas subjected to occasional heavy traffic		
300 mm	Gardens, lawns, paths and paving for pedestrian use or other areas not subjected to vehicular traffic		
7.4.3 Mo	wement in concrete or masonry		
elements flexible r or duct, expansion Pipewort	netrating concrete or masonry s shall be either wrapped with a naterial, or passed through a sleeve to permit free movement for n and contraction. < in or under a concrete slab must led in a manner to achieve a 50 year		
			_
OYMENT	xx November 2022		39

9.0 Equipotential Bonding


9.1 General

9.1.1 NZBC G9 requires any electrical installation within a building to be constructed to protect users from the dangers of contact with parts of the building that may become live during fault conditions.

- 9.1.2 Equipotential bonding is required where all of the following conditions are likely to exist:
- a) Electricity is provided within a building,
- b) The water supply pipe is metallic,
- c) Building users are able to make contact with exposed parts of metal water supply pipe, or any metallic sanitary fixtures connected to it, and
- d) The metal pipe is in contact with the ground, and forms a continuous metallic link from the ground to those parts of the pipe exposed to building users.

10 October 2011

41

bonding conductors

a) Metallic water supply pipe shall be bonded to the earth electrode with an equipotential bonding conductor, as shown in Figure 19. The connection to the water pipe shall be as close as practicable to the point where the pipe leaves the ground, and

b) Metallic hot and cold water supply pipes

a) Metallic *sanitary fixtures* shall be bonded to the metallic water supply pipe with an equipotential bonding conductor, as shown

Metallic sanitary fixtures are only required to be bonded to metallic water supply pipes where it is possible for a person to simultaneously touch the pipe (via a tap) and

b) The bonding conductor shall be connected directly to the sanitary fixture. The bonding conductor may connect to the waste pipe where a metallic waste pipe is connected to the *sanitary fixture* and a continuous metallic link is formed between the waste

9.3 Earth bonding conductors

9.3.1 Earth bonding conductors shall be:

a) Made of copper and have a cross-sectional

b) Sheathed with insulating material coloured

c) Fixed at intervals of no greater than 300 mm with aluminium cable fixings.

9.3.2 Earth bonding conductors shall comply with AS/NZS 5000.1 or AS/NZS 5000.2

Amend 7 Sep 2010 Amend 8 Oct 2011

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Proposed G12 Water Supplies - No changes proposed to this page

Acceptable Solution G12/AS2 SOLAR WATER HEATERS Acceptable Solution G12/AS2 Solar Water Heaters

1.0 Scope

1.0.1 This Acceptable Solution applies to solar water heaters installed in or on buildings.

1.0.2 To comply with this Acceptable Solution solar water heaters must also comply with the appropriate requirements of G12/AS1. This Acceptable Solution meets the requirements of NZBC Clauses B1, B2, E2, G12 and H1.

1.0.3 Text boxes headed 'COMMENT' occurring throughout this document are for guidance purposes only.

1.1 Structural support limitations

1.1.1 Where a *building* has not been specifically designed to support a solar water heater, this Acceptable Solution can be used for the support and fixing of a solar collector on *buildings* that meet the structural requirements specified in any one of the following:

- NZS 3604: 1990
- NZS 3604: 1999
- Amend 8 Oct 2011 | NZS 3604: 2011

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

- NZS 4203
- AS/NZS 1170: Parts 0, 1, 2, 3 and NZS 1170: Part 5.

But only when all of the following requirements are met:

- a) the weight of solar collector, including frames, fittings, and heat transfer fluid, has a combined weight of no more than 22 kg per square metre (based on the gross area of the solar collector), and
- b) the hot water storage tank is not installed on or above the roof, and
- c) where the hot water storage tank is located within a roof it has a maximum size of:
- i) 200 litres when installed in accordance with NZS 3604: 1999 Section 14, or
- ii) 450 litres when installed in accordance Amend 10 Jan 2017 with AS/NZS 3500 Part 4 Section 5, and

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

d) the roof has a pitch no steeper than 45°, and

- e) the *building* is in a *wind zone* where wind speeds do not exceed 50 m/s (VH wind zone defined in NZS 3604: 1999) and
- f) the solar collector has an area no greater than 4 m², and
- a) the design ground snow loading for the building is less than:
- (i) 0.5 kPa as determined by NZS 4203, or NZS 3604: 1990 or NZS 3604: 1999 Section 15. or
- (ii) 1.0 kPa as determined by AS/NZS 1170 Amend 8 or NZS 3604: 2011, Section 15, and
- h) either
 - i) the solar collectors are installed parallel to the roof *cladding*, or
 - ii) where solar collectors are installed at a different pitch to the pitch of the roof
 - the pitch of the solar collector is not greater than 45° to the horizontal, and
 - the building is in a wind zone where wind speeds do not exceed 44 m/s (H wind zone defined in NZS 3604: 1999), and
 - the solar collector faces in the same compass direction as the section of roof the solar collector is installed on

COMMENT:

1. The limitations described in Paragragh 1.1.1 are necessary, because roofs are likely to have limited capacity to support additional loads.

1.1.2 When any of the requirements described in Paragraph 1.1.1 are not met, specific engineering design is required.

COMMENT:

Specific engineering design will require a structure assessment to be completed. This may result in either an assessment that the roof structure is sufficient to support the additional load or details of how to strengthen the roof structure to support the additional load

43

1 January 2017

solar water heaters must also comply with the appropriate requirements of G12/AS1. This Acceptable Solution meets the requirements of NZBC Clauses B1, B2, E2, G12 and H1. 1.0.3 Text boxes headed 'COMMENT' occurring throughout this document are for guidance purposes only. 1.1 Structural support limitations 1.1.1 Where a *building* has not been specifically designed to support a solar water *heater*, this Acceptable Solution can be used

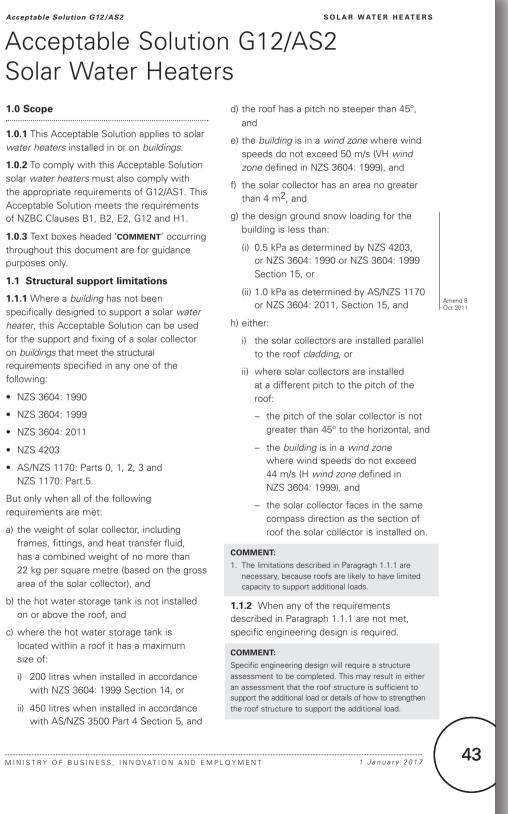
Solar Water Heaters

1.0.1 This Acceptable Solution applies to solar

1.0.2 To comply with this Acceptable Solution

water heaters installed in or on buildings.

Acceptable Solution G12/AS2


1.0 Scope

for the support and fixing of a solar collector on *buildings* that meet the structural requirements specified in any one of the following

- NZS 3604: 1990
- NZS 3604: 1999
- Amend 8 Oct 2011 NZS 3604: 2011
 - NZS 4203
 - AS/NZS 1170: Parts 0, 1, 2, 3 and NZS 1170: Part 5.

But only when all of the following requirements are met:

- a) the weight of solar collector, including frames, fittings, and heat transfer fluid, has a combined weight of no more than 22 kg per square metre (based on the gross area of the solar collector), and
- b) the hot water storage tank is not installed on or above the roof, and
- c) where the hot water storage tank is located within a roof it has a maximum size of:
- i) 200 litres when installed in accordance with NZS 3604: 1999 Section 14. or
- ii) 450 litres when installed in accordance with AS/NZS 3500 Part 4 Section 5, and

Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS

Acceptable Solution G12/AS2

1.2 Exclusions

1.2.1 If the solar water heater includes connection to an application such as underfloor heating, a swimming pool or any similar application, this Acceptable Solution applies only to the solar water heater and its components and not to the application.

2.0 Materials

2.1 Material selection

2.1.1 All material used to install the solar water heater must:

- a) meet the *durability* requirements of NZBC Clause B2, and
- b) be suitable for their use, location and environment as shown in Table 1, and
- c) be compatible with adjoining materials as shown in Table 2, and
- d) be compatible with materials subject to run-off as shown in Table 3 (except as described in Paragraph 2.1.2).

2.1.2 Table 3 states that "butyl/EPDM" to "steel, galvanized unpainted" is "not permitted"; however, water flow from small areas of **EPDM** will not significantly affect the *durability* of the roofing. Therefore it is acceptable to use unpainted **EPDM** boots with unpainted galvanised steel roofing if:

- a) the boots are small (for 60 mm pipe diameter or smaller), and
- b) there are no more than 10 boots used for the solar water heater installation, and
- c) the boots contain no greater than 15% carbon black.

2.1.3 If the requirements described in Paragragh 2.1.2 are not met then either the **EPDM** boots or the galvanised roofing must be painted with a suitable protective coating.

- 2.1.4 Table 2 shows that galvanized fixings must be used rather than stainless steel when in contact with galvanized cladding
- Amend 9 Feb 2014 and zinc-aluminium-magnesium (combinations) coated *cladding*. (This includes mounting brackets and straps.)

44

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

SOLAR WATER HEATERS

1.2 Exclusions

1.2.1 If the solar water heater includes connection to an application such as underfloor heating, a swimming pool or any similar application, this Acceptable Solution applies only to the solar water heater and its components and not to the application.

2.0 Materials

2.1 Material selection

2.1.1 All material used to install the solar water heater must:

- a) meet the *durability* requirements of NZBC Clause B2, and
- b) be suitable for their use, location and environment as shown in Table 1, and
- c) be compatible with adjoining materials as shown in Table 2, and
- d) be compatible with materials subject to run-off as shown in Table 3 (except as described in Paragraph 2.1.2).

2.1.2 Table 3 states that "butyl/EPDM" to "steel, galvanized unpainted" is "not permitted"; however, water flow from small areas of **EPDM** will not significantly affect the *durability* of the roofing. Therefore it is acceptable to use unpainted **EPDM** boots with unpainted galvanised steel roofing if:

a) the boots are small (for 60 mm pipe diameter or smaller), and

b) there are no more than 10 boots used for the solar water heater installation, and

c) the boots contain no greater than 15% carbon black.

2.1.3 If the requirements described in Paragragh 2.1.2 are not met then either the **EPDM** boots or the galvanised roofing must be painted with a suitable protective coating.

2.1.4 Table 2 shows that galvanized fixings must be used rather than stainless steel when in contact with galvanized cladding

Amend 9 Feb 2014 and zinc-aluminium-magnesium (combinations) coated *cladding*. (This includes mounting brackets and straps.)

14 February 2014

44

14 February 2014

Acceptable Solution G12/AS2

Proposed G12 Water Supplies - No changes proposed to this page

Table 1: Material selection (repr This table shall be read in				.1, 2.1.2, 2.1.3 and 2
				-
	Exposure(1)(2)(4) NOTE: Consider a		Acceptable Exp as per NZS 360	oosure Zones 04 – Section 4 (3)(4)(6
Material	walls as 'Shelter for steel based claddings(8)		15 years	50 years for hidde elements(2)(9)
CLADDINGS AND FLASHINGS	g-(,	.,,,-		
Aluminium, zinc	Hidden(2) Exposed Sheltered		B,C,D,E B,C,D,E B,C,D,E	B,C,D,E
Copper, lead, or stainless steel	Hidden(2) Exposed Sheltered		B,C,D,E B,C,D,E B,C,D,E	B,C,D, E
Factory painted				
Aluminium-zinc-magnesium (combinations) coated or galvanised steel, to AS 1397 and AS/NZS 2728 with AM100, ZM274, and AZ150 minimum coatings	Hidden(9) Hidden(9) Exposed(8) Exposed(8) Sheltered Sheltered	Type 4 Type 6 Type 4 Type 6 Type 4 Type 6	B,C,D,E B,C,D,E B,C,D B,C,D,E B,C B,C,D	B,C,D B,C,D,E
Pressed metal tiles coated to minimum AZ150 or AM100 to AS 1397, AS/NZS 2728 or with post-form factory painting to cl 8.3.4.2.	Exposed Sheltered	Type 6 Type 6	B,C,D B,C,D	
Non-factory painted				
Aluminium-zinc-magnesium (combinations) coated steel, to AS 1397 with AZ150 or AM125 minimum coatings	Hidden(9) Exposed(8) Sheltered		B,C,D,E B,C B	B,C,D
Galvanised steel Z450 to AS 1397	Hidden(9) Exposed(8) Sheltered		B,C,D B,C B	B,C
Non-metallic				
Bituminous material, or uPVC	Hidden Exposed (uPVC on Sheltered (uPVC o		B,C,D,E B,C,D,E B,C,D,E	B,C,D,E
Butyl rubber	Hidden Exposed Sheltered		B,C,D,E B,C,D,E B,C,D,E	B,C,D,E
FIXINGS(7)				
Aluminium, bronze, and stainless steel (Types 304 and 316)(10)	Hidden Exposed Sheltered		B,C,D,E B,C,D,E B,C,D,E	B,C,D,E
Nails – Hot-dip galvanised steel to AS/NZS 4680	Hidden(5)(9) Exposed Sheltered		B,C,D B,C, B	B,C
Screws – galvanised steel, painted or unpainted, to AS 3566: Part 2	Hidden(5)(9) Exposed Sheltered	Class 3 Class 4 Class 4	B,C,D,E(3)(4) B,C,D B,C	B,C,D,E

Acceptable	Solution G12/AS	32		
Table 1:	Material selectio This table shall b			
		ľ v f	xposure(1)(2)(4 NOTE: Consider valls as 'Shelte or steel based	r all ered'
Material			laddings(8)	Туре
	GS AND FLASHIN			
Aluminiun Copper, le		E	Hidden(2) Exposed Sheltered Hidden(2)	
or stainles		E	Exposed Sheltered	
Factory p	ainted			
(combinat steel, to A	n-zinc-magnesium ions) coated or galva IS 1397 and AS/NZS 00, ZM274, and AZ coatings	anised H S 2728 E 150 E S	lidden(9) lidden(9) Exposed(8) Exposed(8) Sheltered Sheltered	Type 4 Type 6 Type 4 Type 6 Type 4 Type 6
minimum 1397, AS/I	netal tiles coated to AZ150 or AM100 to NZS 2728 or with pos nting to cl 8.3.4.2.	AS s	xposed Sheltered	Type 6 Type 6
Non-facto	ory painted			
(combinat	n-zinc-magnesium ions) coated steel, t with AZ150 or AM12 coatings	ю Е	lidden(9) Exposed(8) Sheltered	
Galvanise	d steel Z450 to AS 1	E	lidden(9) xposed(8) Sheltered	
Non-met	allic			
Bituminou	is material, or uPVC	E	lidden Exposed (uPVC c Sheltered (uPVC	
Butyl rubb	per	E	lidden xposed Sheltered	
FIXINGS(7)			
	n, bronze, and stainl es 304 and 316)(10)	E	lidden xposed Sheltered	
Nails – Ho to AS/NZS	ot-dip galvanised ste \$ 4680	E	lidden(5)(9) Exposed Sheltered	
	galvanised steel, pa ed, to AS 3566: Par	t2 E	lidden(5)(9) xposed Sheltered	Class 3 Class 4 Class 4

	SOLAR WATER HEA	TERS
) 3 and Paragrap	bhs 2.1.1, 2.1.2, 2.1.3 and 2.	1.4
	ble Exposure Zones ZS 3604 – Section 4 (3)(4)(6	6)
15 years	50 years for hidde elements(2)(9)	n
B,C,D,E B,C,D,E B,C,D,E	B,C,D,E	
B,C,D,E B,C,D,E B,C,D,E	B,C,D, E	
B,C,D,E B,C,D,E B,C,D,E B,C,D,E B,C B,C,D	B,C,D B,C,D,E	
B,C,D,E B,C,D		
B,C,D,E B,C B	B,C,D	
B,C,D B,C B	B,C	
B,C,D,E B,C,D,E B,C,D,E	B,C,D,E	
B,C,D,E B,C,D,E B,C,D,E	B,C,D,E	
B,C,D,E B,C,D,E B,C,D,E	B,C,D,E	
B,C,D B,C, B	B,C	
B,C,D,E(3) B,C,D B,C	(4) B,C,D,E	
Т	14 February 20	

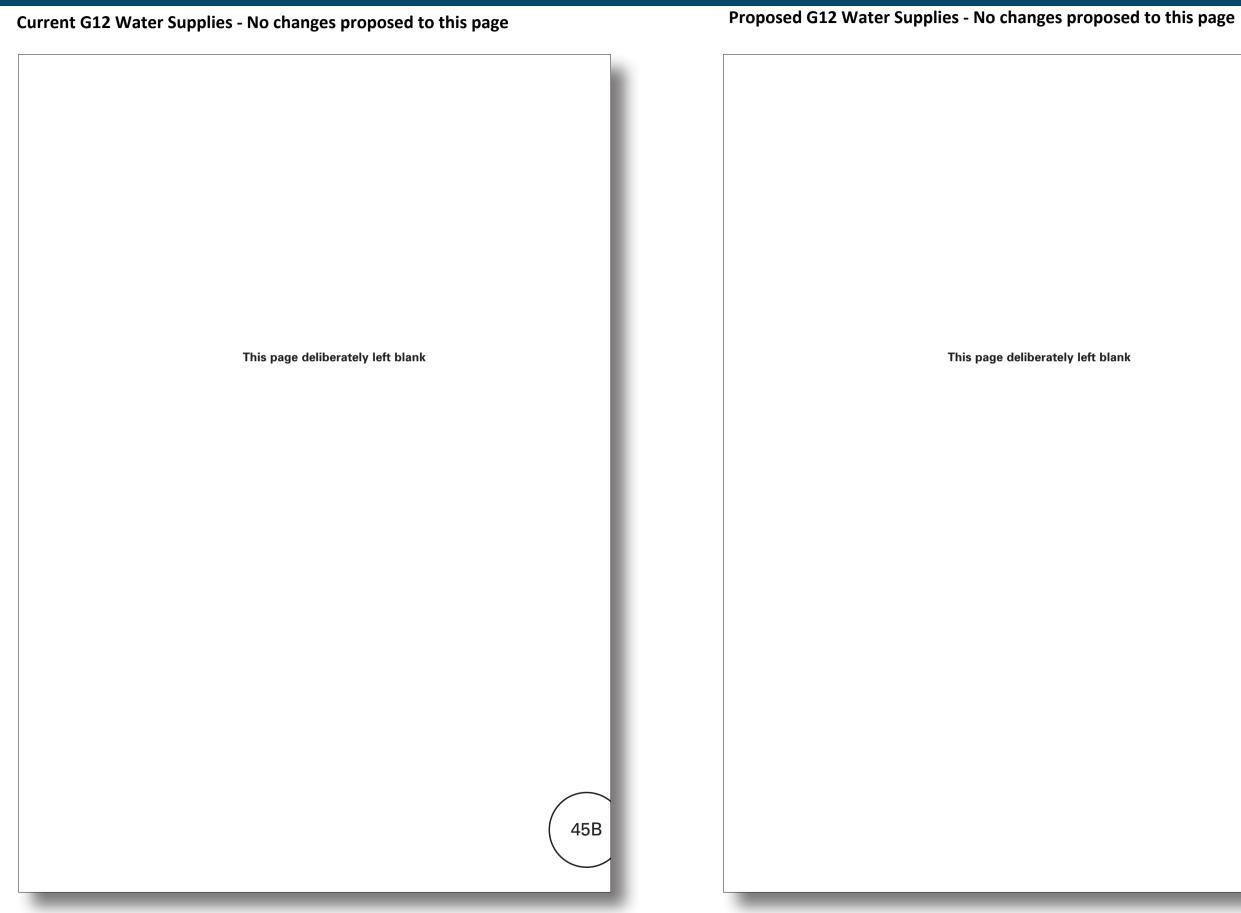
irrent G12 Water Supplies - No chang	ges proposed to this page	Proposed G12 Water Supplies - No changes
SOLAR WATER HEATERS	Acceptable Solution G12/AS2	SOLAR WATER HEATERS
Tobe 1: 9 Poter or manufacturer's information for maintenance requirements on require a 50 year durability under the NZBC. The term "ixposed The term "hidden" means being visible, but not rain washed. Figure 4.3(a). Exposed and shaftered elements require a 15 year as both 'sheftered' and 'exposed', the 'sheftered' condition will at 0. 0. A S/NZS 2728 lists atmospheric classes derived from ISO 9223 for exposure to wind-driven sea-spray. NZS 3004 references atmospheric spose to wind-driven sea-spray. NZS 3004 references atmospheric spose in a charbit requirements of sites in Zone E. 0. The geographic limits of atmospheric classes in NZS 3004 and Auotimal in NZS 3004. 1. Includes fixings protected by putty and an exterior paint system C. 0. Microclimates based on evidence from adjacent structures of coartmospheres are outside the scope of this Acceptable Solution. 0. Refer to Tables 2 and 3 for compatibility of fixings with metal <i>dla B. Roof</i> only. Coated steel wall <i>laddings</i> must be considered as 'st 0. 10. Hue use of stainless steel fixings is not recommended by steel n'arite and industrial environments, as they are considered to compatibility of strings with metal <i>dla</i> sheftered'	Ach that no part is visible. Hidden elements " means having surfaces exposed to rain washing. For diagrammatic outline, refer NZS 3804 durability. Where an element can be categorised upply. or Australia and New Zealand, determined by sheric classes B (Low), C (Medium) and D (High). of <i>cladding</i> selection, Zone E (Severe marine gners must consult metal supplier's information for NS/NZS 2728 may vary. Table 1 uses the limits of primer, undercoat and two top coats of paint. rrosion caused by industrial or geothermal addings. heltered'. nd E (exposure to salt air) must be considered manufacturers for use with coated steel in severe	Tota 1: Material selection - continued 9
5A 14 February 2014 MINISTRY OF	BUSINESS, INNOVATION AND EMPLOYMENT	45A MINISTRY OF BUSINESS,

proposed to this page

Acceptable Solution G12/AS2

d and Sheltered locations. rt is visible. Hidden elements ng surfaces exposed to rain washing. atic outline, refer NZS 3604 rere an element can be categorised

d New Zealand, determined by B (Low), C (Medium) and D (High). election, Zone E (Severe marine onsult metal supplier's information for


nay vary. Table 1 uses the limits

dercoat and two top coats of paint. d by industrial or geothermal

e to salt air) must be considered

for use with coated steel in severe tion.

INNOVATION AND EMPLOYMENT

left blank	
	(45B

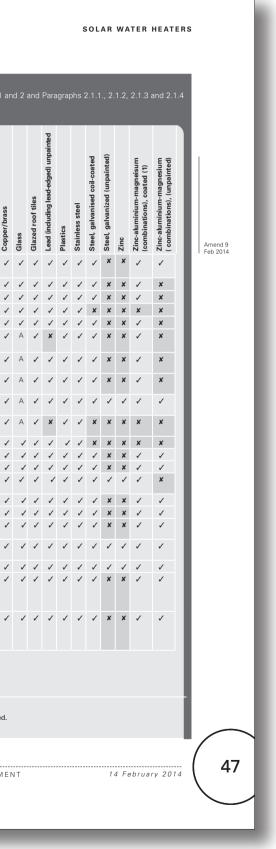
SOLAR WATER HEATERS Acceptable Solution G12/AS2 Compatibility of materials in contact This table must be read in conjunction with Tables 1 and 3 and Paragraphs 2.1.1., 2.1.2, 2.1.3 and 2.1.4 Table 2: Amend 9 Aluminium, anodised or mill-finish J J J X J X X X CCA-treated timber (2) X B J J J J J J J J J J J J J J J J K K B X K B Cedar Cement plaster (uncoated) X X J J J J J J J J J J X J J X J J X X J J J X X Ceramic tiles (cement grout) Clay bricks (cement mortar) Concrete old (unpainted) Concrete green (unpair Copper/brass Glass Glazed roof tiles Lead (including lead-edged) unpainted X × Plastics Stainless steel B B I I I I I I I I B I I B I I B X X B B Steel, galvanised *✓ ✓ ✓ B ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ B ✓ B ✓ ✓ ✓ ✓ ✓ ✓* coil-coated J J X X J J X X J B J X J Steel, galvanized (unpainted) *J J J X X J J J X X X J J B J X J J J J* Zinc Zinc-aluminium / / B / / / / X X / B / B / J / / / magenesium (combinations), coated (1) Zinc-aluminium J J J X X X X X J X X J J X J B J J J J magnesium (combinations) Amend 9 Feb 2014 (unpainted) LEGEND: ✓ Materials satisfactory in contact. Contact between materials is not permitted. Minimum gap of 5 mm is required to prevent moisture bridging. B Avoid contact in sea-spray zone or corrosion zone D. NOTES: (1) Coated - includes factory-painted, coil-coated and powder-coated. (2) Includes copper azole and copper quaternary salts. 46 14 February 2014 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current G12 Water Supplies - No changes proposed to this page

Aluminium, anodised or / <th></th> <th>Table 2: Compatit This table</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>n Tab</th> <th>oles</th> <th>1 an</th> <th>d 3 ;</th> <th>and I</th> <th>Para</th> <th>g</th>		Table 2: Compatit This table									n Tab	oles	1 an	d 3 ;	and I	Para	g
mill-finish Image: Second			Aluminium, anodised or mill-finish	Aluminium, coated (1)	Butyl rubber & EPDM	CCA-treated timber (2)	Cedar	Cement plaster (uncoated)	Ceramic tiles (cement grout)	Clay bricks (cement mortar)	Concrete old (unpainted)	Concrete green (unpainted)	Copper/brass	Glass	Glazed roof tiles	Lead (including lead-edged) unpainted	Director
Butyl rubber & EDPM v			~	~	~	×	~	×	×	×	~	×	×	~	1	×	
CA-treated timber (2) x B x						В	1	×	×	×	1	×	×	1	1		
Cedar V			-			1	1	1	1	1	1	1	1	1	1		
Cement plaster (uncoated) X X V<						1	1	1	1	1	1	1	1	1	1		
(cement grout) x		Cement plaster	_	_		1	1	~	1	1	1	~	~	1	1		
Clay bricks (cement mortar) x			×	x	1	1	1	1	1	1	1	~	1	1	1	1	
(unpainted) X <td< td=""><th></th><td>Clay bricks</td><td>×</td><td>×</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>~</td><td>1</td><td>~</td><td>~</td><td>1</td><td>1</td><td>~</td><td></td></td<>		Clay bricks	×	×	~	~	~	~	~	~	1	~	~	1	1	~	
(unpainted) x <td< td=""><th></th><td>(unpainted)</td><td></td><td>_</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td></td<>		(unpainted)		_	1	1	1	1	1	1	1	1	1	1	1		
Glass V <th></th> <td></td> <td>×</td> <td>×</td> <td>1</td> <td>×</td> <td></td>			×	×	1	1	1	1	1	1	1	1	1	1	1	×	
Glazed roof tiles V		Copper/brass	x	x	1	1	1	1	1	1	1	1	1	1	1	В	
Lead (including lead-edged) unpainted X B V						1	1	1	1	1	1		-	1	1		
lead-edged) unpainted V			-	•		1	1		1	1	1				1	-	
Stainless steel B V		lead-edged) unpainted															
Steel, galvanised ✓							1	1	1	1	1	-					
(unpainted) Image: Second		Steel, galvanised	✓	1	1	-	1	1	1	1	1		_		1		
Zinc V			~	~	~	×	×	~	~	~	1	×	×	1	1	В	
magenesium (combinations), coated (1) ✓			1	1	1	×	×	1	1	1	1	×	×	1	1	В	
magnesium (combinations) (unpainted) LEGEND: ✓ Materials satisfactory in contact. X Contact between materials is not permitted. Minimum gap of 5 mm is required B Avoid contact in sea-spray zone or corrosion zone D. NOTES: (1) Coated – includes factory-painted, coil-coated and powder-coated. (2) Includes copper azole and copper quaternary salts.		magenesium (combinations),	1	1	1	В	1	1	1	1	1	×	×	1	1	В	
 Materials satisfactory in contact. Contact between materials is not permitted. Minimum gap of 5 mm is required Avoid contact in sea-spray zone or corrosion zone D. NOTES: (1) Coated – includes factory-painted, coil-coated and powder-coated. (2) Includes copper azole and copper quaternary salts. 		magnesium (combinations)	1	1	1	×	×	×	×	×	1	×	×	1	1	×	
	·	 Materials satisfactor Contact between m Avoid contact in set NOTES: (1) Coated – includes factor 	a-sp	rials ray z -pair	is no cone nted,	ot pe or c coil-	orro coat	sion ed a	zon nd p	e D.				mm	is re	quir	эc
14 February 2014 MINISTRY OF BUSINESS, INF	\backslash	 (2) Includes copper azol 	e and	u cop	per	quat	erna	ry sa	alts.								
)	14 February 2014						N	ЛIN	IST	RΥ	0 F	BUS	SINI	ESS	, IN	11

Proposed G12 Water Supplies - No changes proposed to this page

		Ac	cept	tabl	e Sa	lutior	n G12/	AS2				
ara	grap	bhs 2	2.1.1	., 2.	1.2,	2.1.3 a	and 2.1	.4				
Lead (including lead-edged) unpainted	Plastics	Stainless steel	Steel, galvanised coil-coated	Steel, galvanized (unpainted)	Zinc	Zinc-aluminium-magneisum (combinations), coated (1)	Zinc-aluminium-magnesium (combinations), (unpainted)		Amend Feb 201	9 4		
×	1	В	1	~	~	~	~	L				
В	1	В	1	1	1	1	1					
٧ ,	1	1	1	✓ 	✓ 	~	✓ 					
√ √	√ √	√ √	B	×	×	B ✓	×					
×	1	1	1	1	1	1	×	L				
1	~	~	~	1	~	~	×	I				
1	1	1	1	1	~	1	×					
1	~	~	~	1	1	~	~	L				
×	1	1	×	×	×	×	×					
В	1	В	×	×	×	×	×					
/ /	✓ ✓	✓ ✓	✓ ✓	✓ ✓	1 1	✓ ✓	1					
~	~	В	В	В	В	В	×					
1	1	1	1	1	1	1	1					
В	1	1	В	×	×	В	В					
B	1	B	1		1							
В	1	×	1	1	1	~	1					
B	1	×	1	1	1	1	1					
В	1	В	~				1					
×	1	В	1	~	1	1	~					
uir	ed to	o pre	even	it me	oistu	ire brid	lging.					


INNOVATION AND EMPLOYMENT

Proposed G12 Water Supplies - No changes proposed to this page

Material water flo onto Material that water flows from	ws	Aluminium, anodised or mill-finish	õ	Butyl rubber & EPDM	CCA-treated timber (2)	Cedar	Cement plaster (uncoated)	Ceramic tiles (cement grout)	Clay bricks (cement mortar)	Concrete old (unpainted)	Concrete green (unpainted)	Copper/brass	Glass	Glazed roof tiles	Lead (including lead-edged) unpainted	Plastics	Stainless steel	Steel, galvanised coil-coated	Steel, galvanized (unpainted)	Zinc	Zinc-aluminium-magneisum (combinations), coated (1)	Zinc-aluminium-magnesium (combinations), (unpainted)
Aluminium, anodis mill-finish	ed or	~	1	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	×	×	1	~
Aluminium, coated	i (1)	~	1	1	1	1	1	~	1	1	1	1	1	1	~	1	1	1	x	×	~	×
Butyl rubber & EDI	PM	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	x	×	1	×
CCA-treated timbe	r (2)	x	×	~	~	~	~	1	1	~	1	~	1	1	1	1	~	×	×	x	×	×
Cedar		~	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	×	×	~	×
Cement plaster (uncoated)		×	×	1	1	1	1	1	1	1	1	1	A	1	×	1	1	1	×	×	1	×
Ceramic tiles (cement grout) Clay bricks		×	×	1	1	1	1	1	1	1	1	۲ ۲	A	1	1	1	۲ ۲	۲ ۲	×	×	<i>\</i>	×
(cement mortar)		^	î	~	~	~	~	~	~	~	~	~	A	~	~	~	·	~	î	î	~	î
Concrete old (unpainted)		1	1	1	1	1	1	1	1	1	1	1	А	1	1	1	1	1	1	1	~	1
Concrete green (unpainted)		×	×	~	~	~	~	~	~	~	~	~	А	~	×	~	~	×	×	×	×	×
Copper/brass		×	×	1	1	1	1	1	1	1	1	1	7	1	1	1	1	×	x	x	×	×
Glass		1	1		1	1	1				1		/	1		1		1	×	×	1	1
Glazed roof tiles		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	×	×	1	1
Lead (including lead-edged) unpa	inted	×	×	1	1	1	1	1	1	1	1	~	~	~	1	1	1	~	~	1	1	×
Plastics		1	1	1	1	1	1	~	1	1	1	1	1	1	~	1	1	1	×	×	1	1
Stainless steel		1	1	1	1	1	1	 	1	1	1	1	1	1	1	1	1	1	×	×	1	1
Steel, galvanised coil-coated Steel, galvanized		1	1	1	1		1			1	1			1	1	1	\ \	1	×	×	1	1
(unpainted) Zinc		· ·		<i>v</i>	1	· ·	· ·	· 、	1	· ·	· 、	· •	v 	· ·	1	1	1	1	✓ ✓	× ✓	~	✓ ✓
Zinc-aluminium- magenesium (combinations), coated (1)		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	×	×	1	1
Zinc-aluminium- magnesium (combinations) (unpainted)		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	×	x	1	1
(combinations)	off is no staining	ot pe of g	rmi glas:	tted s m	l as i ay o	indio ccui	ateo wit	d. h rur	n-off		coat	ed.										

	Acceptable Solution of Table 3: Compati	bility	y of	mat								1 a
	Material that water flows onto Material that water flows from	Aluminium, anodised or mill-finish	Aluminium, coated (1)	Butyl rubber & EPDM	CCA-treated timber (2)	Cedar	Cement plaster (uncoated)	Ceramic tiles (cement grout)	Clay bricks (cement mortar)	Concrete old (unpainted)	Concrete green (unpainted)	Copper/brass
	Aluminium, anodised or mill-finish	~	1	1	~	~	1	~	1	1	~	~
	Aluminium, coated (1)	1	1	1	1	1	1	1	1	1	1	~
	Butyl rubber & EDPM	1	1	1	1	1	1	1	1	1	1	~
	CCA-treated timber (2)	x	×	1	1	1	1	1	1	1	1	~
	Cedar	1	1	1	1	1	1	1	1	1	1	~
	Cement plaster (uncoated)	×	×	~	1	1	~	1	~	~	1	~
	Ceramic tiles (cement grout)	×	×	1	1	1	1	1	1	1	1	~
	Clay bricks (cement mortar) Concrete old	×	×		1	1		1			1	
	(unpainted)		~									, v
	Concrete green (unpainted)	×	×	1	1	1	1	1	1	1	1	~
	Copper/brass	×	×	~	~	~	~	~	~	~	~	~
	Glass	1	1	1	1	1	1	1	1	1	1	~
	Glazed roof tiles	✓ ✓	√ 	1	1	1	1	1	1	1	 	~
	Lead (including lead-edged) unpainted	×	×	~	~	~	~	~	~	~	~	~
	Plastics	1	1	1	1	1	1	1	1	1	1	~
	Stainless steel	1	1	1	1	1	1	1	1	1	1	~
	Steel, galvanised coil-coated	1	1	1	1	~	1	1	1	1	~	~
	Steel, galvanized (unpainted)	1	1	1	~	~	1	~	~	1	1	~
	Zinc	1	1	1	1	1	1	1	1	1	1	~
	Zinc-aluminium- magenesium (combinations), coated (1)	1	1	1	1	1	1	1	1	1	1	~
Amend 9 Feb 2014	Zinc-aluminium- magnesium (combinations) (unpainted)	1	1	1	1	1	1	1	1	1	1	~
	LEGEND: ✓ Materials satisfac X Water run-off is r A Etching or stainin NOTES: (1) Coated – includes (2) Includes copper az MINISTRY OF BUSIN	facto	erm glas ry-pa ind c	ittec s m ainte	lasi ay o d, co er qu	indic ccur oil-co ateri	ated wit	d. h rui l and salts	n-off I pov s.	vder-		

Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS

Acceptable Solution G12/AS2

3.0 Solar Water Heater Requirements

3.1 Solar water heaters and components

3.1.1 Solar *water heaters* must comply with AS/NZS 2712

Amend 9 Feb 2014

3.1.2 Tanks installed as part of a pumped solar *water heater* where the tank is separately mounted from the collector must comply with the minimum tank insulation requirements of AS/NZS 4692.2.

COMMENT:

AS/NZS 4692.2: 2005 specifies Minimum Energy Performance Standard (MEPS) requirements for electric *water heaters*. Clause 1.4 of this Standard excludes solar *water heaters*. Paragraph 3.1.2 of this Acceptable Solution modifies this exclusion so that hot water tanks mounted separately from solar collectors used in a solar *water heater* must now comply with the MEPS requirements specified in AS/NZS 4692.2: 2005.

3.2 Solar controller

3.2.1 Where a solar *water heater* has a controller, the controller must meet the requirements specified in AS/NZS 2712: clause 6.3.

3.2.2 The controller or the solar *water heater* design must minimise the use of supplementary heating while meeting the requirements described in Paragraph 3.5.

3.2.3 A solar *water heater* which meets the requirements described in Paragraphs 3.2.1 and/or 3.2.2 satisfies NZBC Clause H1.3.4.

3.3 Sizing of systems

3.3.1 Solar *water heaters* must have a minimum of 50 litres of hot water storage per square metre of collector area.

COMMENT:

The sizing requirement described in Paragraph 3.3.1 is to prevent overheating of the system. The capacity of the tank should not be less than one day's expected use. For most houses the expected hot water consumption is 40–60 litres per person per day when stored at 60° C.

3.4 Operating and safety devices

3.4.1 Storage tanks in solar *water heaters* must have operating and safety devices that meet the requirements of G12/AS1 Paragraph 6.

3.4.2 Water from the installed system must not discharge onto the roof. *Vent pipes* and outlets from pressure relief valves must be plumbed to a suitable drain point.

3.5 Protection from Legionella bacteria

3.5.1 To prevent the growth of Legionella bacteria, solar *water heaters* must either:

- a) have a continuously energised heating element fitted within 55% of the bottom of the *water tank* (by volume) and a thermostat set to 60°C or higher, or
- b) be controlled so that the water above the element is heated to 60°C once a day, and the element is in the bottom 20% of the *water tank* (by volume) and no more than 150 mm from the bottom of the tank, or
- c) be controlled so that all of the stored water is heated to 60°C or higher, once a week for not less than 1 hour. The temperature must be measured by a probe in the bottom 20% of the *water tank* (by volume) and no more than 150 mm from the bottom of the water tank. For open loop systems the stored water includes the water in the solar collector and water must be circulated through the collector during the heating period.
- **3.5.2** Where the solar *water heater* stores potable water and is used as a pre-heater for an instantaneous *water heater*, either:
- a) the hot water storage tank connected to the solar collector must be fitted with supplementary heating and a controller operating to meet the conditions outlined in Paragraph 3.5.1, or
- b) the instantaneous water heater must heat all water passing through it to not less than 70°C.

SOLAR WATER HEATERS 3.0 Solar Water Heater Requirements 3.1 Solar water heaters and components 3.1.1 Solar *water heaters* must comply with AS/NZS 2712 Amend 9 Feb 2014 3.1.2 Tanks installed as part of a pumped solar water heater where the tank is separately mounted from the collector must comply with the minimum tank insulation requirements of AS/NZS 4692.2. COMMENT AS/NZS 4692.2: 2005 specifies Minimum Energy Performance Standard (MEPS) requirements for electric water heaters. Clause 1.4 of this Standard excludes solar water heaters. Paragraph 3.1.2 of this Acceptable Solution modifies this exclusion so that hot water tanks mounted separately from solar collectors used in a solar water heater must now comply with the MEPS requirements specified in AS/NZS 4692.2: 2005. 3.2 Solar controller 3.2.1 Where a solar water heater has a controller, the controller must meet the requirements specified in AS/NZS 2712 Amend 9 Feb 2014 clause 6.3. 3.2.2 The controller or the solar water *heater* design must minimise the use of supplementary heating while meeting the requirements described in Paragraph 3.5. 3.2.3 A solar water heater which meets the requirements described in Paragraphs 3.2.1 and/or 3.2.2 satisfies NZBC Clause H1.3.4. 3.3 Sizing of systems 3.3.1 Solar water heaters must have a minimum of 50 litres of hot water storage per square metre of collector area. COMMENT: The sizing requirement described in Paragraph 3.3.1 is to prevent overheating of the system. The capacity than 70°C. of the tank should not be less than one day's expected use. For most houses the expected hot water consumption is 40-60 litres per person per day when stored at 60°C. 48 14 February 2014

48

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

14 February 2014

Acceptable Solution G12/AS2

3.4 Operating and safety devices

3.4.1 Storage tanks in solar *water heaters* must have operating and safety devices that meet the requirements of G12/AS1 Paragraph 6.

3.4.2 Water from the installed system must not discharge onto the roof. *Vent pipes* and outlets from pressure relief valves must be plumbed to a suitable drain point.

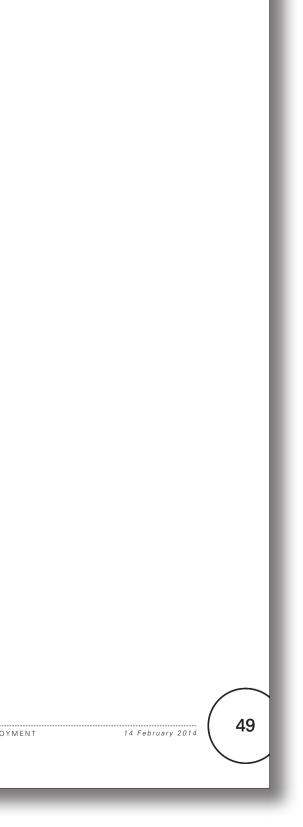
3.5 Protection from Legionella bacteria

3.5.1 To prevent the growth of Legionella bacteria, solar *water heaters* must either:

 a) have a continuously energised heating element fitted within 55% of the bottom of the *water tank* (by volume) and a thermostat set to 60°C or higher, or

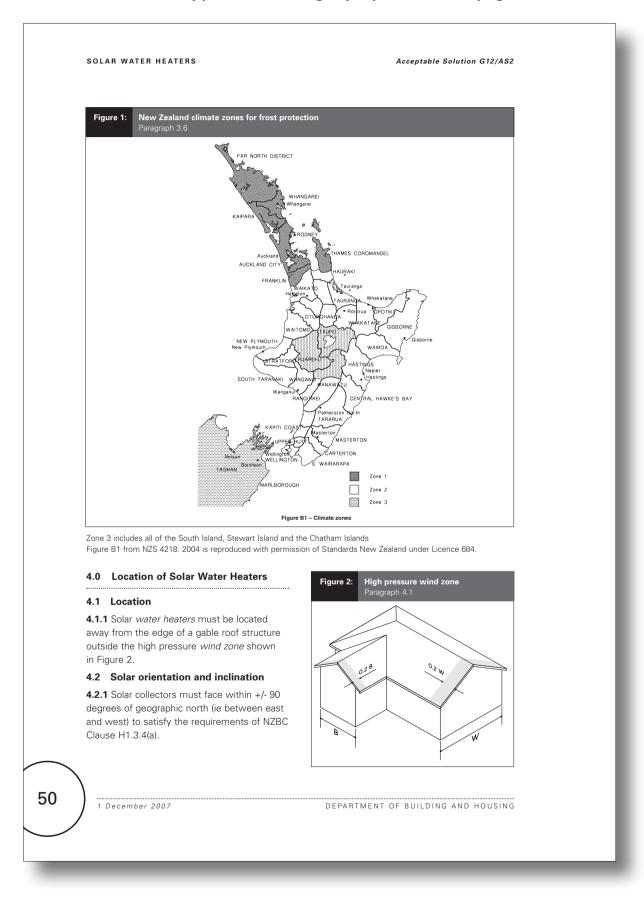
 b) be controlled so that the water above the element is heated to 60°C once a day, and the element is in the bottom 20% of the *water tank* (by volume) and no more than 150 mm from the bottom of the tank, or

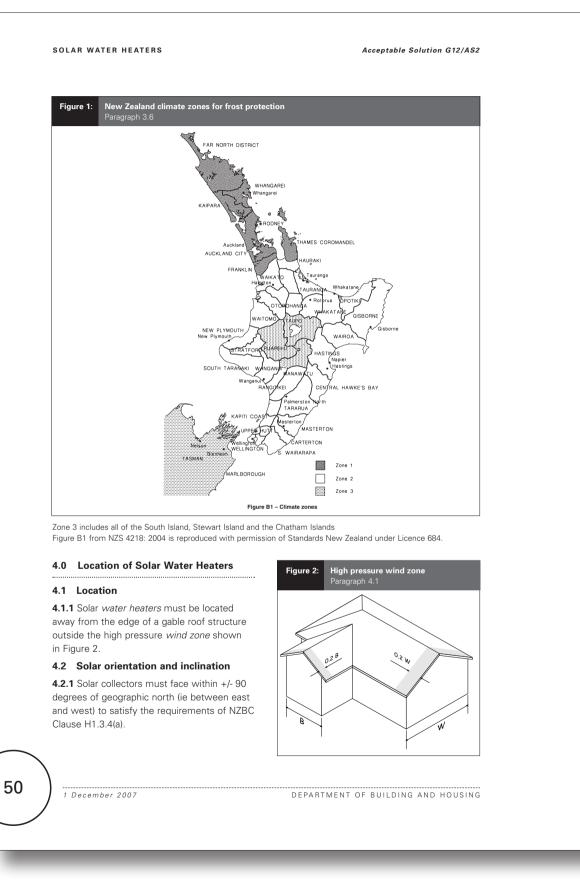
c) be controlled so that all of the stored water is heated to 60°C or higher, once a week for not less than 1 hour. The temperature must be measured by a probe in the bottom 20% of the *water tank* (by volume) and no more than 150 mm from the bottom of the water tank. For open loop systems the stored water includes the water in the solar collector and water must be circulated through the collector during the heating period.


3.5.2 Where the solar *water heater* stores potable water and is used as a pre-heater for an instantaneous *water heater*, either:

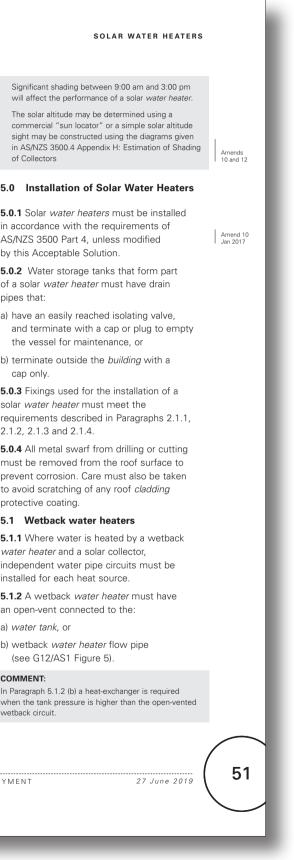
 a) the hot water storage tank connected to the solar collector must be fitted with supplementary heating and a controller operating to meet the conditions outlined in Paragraph 3.5.1, or

b) the instantaneous *water heater* must heat all water passing through it to not less


Proposed G12 Water Supplies - No changes proposed to this page


	Acceptable Solution G12/AS2	SOLAR WATER HEATERS		Acceptable Solution G12/AS2
	3.5.3 Where the solar <i>water heater</i> supplies inlet water to a <i>storage water heater</i> with an element in the bottom 20% of the water tank (by volume) and no more than 150 mm from the bottom of the tank with a thermostat set to no less than 60°C, no additional Legionella control is required.			3.5.3 Where the solar <i>water heater</i> supplies inlet water to a <i>storage water heater</i> with an element in the bottom 20% of the water tank (by volume) and no more than 150 mm from the bottom of the tank with a thermostat set to no less than 60°C, no additional Legionella control is required.
	COMMENT: Paragraph 3.5 of this Acceptable Solution provides ways to demonstrate that the NZBC Clause G12.3.9 (i.e. "A hot water system must be capable of being controlled to prevent the growth of Legionella bacteria") is satisfied. This is a heat disinfection method which is considered the most effective method to control Legionella. The heating required to control the growth of Legionella does not necessarily have to be achieved using supplementary electric heating; it could also be achieved using gas, solar or wood as a heating fuel.			COMMENT: Paragraph 3.5 of this Acceptable Solution provides ways to demonstrate that the NZBC Clause G12.3.9 (i.e. "A hot water system must be capable of being controlled to prevent the growth of Legionella bacteria") is satisfied. This is a heat disinfection method which is considered the most effective method to control Legionella. The heating required to control the growth of Legionella does not necessarily have to be achieved using supplementary electric heating; it could also be achieved using gas, solar or wood as a heating fuel.
	3.6 Protection from frosts			3.6 Protection from frosts
	3.6.1 For protection from freezing, collectors installed in climate zones 1 and 2 (as shown in Figure 1) must:			3.6.1 For protection from freezing, collectors installed in climate zones 1 and 2 (as shown in Figure 1) must:
Amend 9 Feb 2014	a) pass the level 1 test described in AS/NZS 2712 Appendix E, or		Amend 9 Feb 2014	AS/NZS 2712 Appendix E, or
	b) have an automatic drain-down system.			b) have an automatic drain-down system.
	3.6.2 For protection from freezing, collectors installed in climate zone 3 (as shown in Figure 1) must:			3.6.2 For protection from freezing, collectors installed in climate zone 3 (as shown in Figure 1) must:
Amend 9 Feb 2014	a) pass the level 2 test described in AS/NZS 2712 Appendix E, or		Amend 5 Feb 2014	a) pass the level 2 test described in
	b) have an automatic drain-down system.			b) have an automatic drain-down system.
	MINISTRY OF BUSINESS, INNOVATION AND EMP			MINISTRY OF BUSINESS, INNOVATION AND EMPLO

SOLAR WATER HEATERS


Proposed G12 Water Supplies - No changes proposed to this page



Proposed G12 Water Supplies - No changes proposed to this page

4.2.2 Solar collectors must be inclined at an angle within +/- 20 degrees of the angle of	Significant shading between 9:00 am and 3:00 pm will affect the performance of a solar <i>water heater</i> .					ors must degrees		
latitude (from the horizontal) to satisfy the	The solar altitude may be determined using a		-			norizontal)		-
requirements of NZBC Clause H1.3.4(a).	commercial "sun locator" or a simple solar altitude sight may be constructed using the diagrams given		requi	rement	s of NZ	ZBC Claus	se H1.3	;.4(a).
COMMENT:	in AS/NZS 3500.4 Appendix H: Estimation of Shading of Collectors	Amends 10 and 12		MENT:	iontotio		colloctor	in ann
1. The ideal orientation of a solar collector is geographic north with an inclination angle from the horizontal			noi	th with a	an inclina	n of a solar ation angle	from the	horizo
the same as the angle of latitude for the location. Deviations from the ideal orientation will reduce the performance of the solar <i>water heater</i> .	5.0 Installation of Solar Water Heaters		De	viations f	rom the	gle of latitud ideal orien the solar w	tation wi	ill redu
Details of the impact of changes in orientation and	5.0.1 Solar <i>water heaters</i> must be installed in accordance with the requirements of					ct of change		
inclination are provided in NZS 4614: 1986, and are shown in the following diagram.	AS/NZS 3500 Part 4, unless modified	Amend 10 Jan 2017				ded in NZS ⁄ing diagram		₱86, ar
FACTORS FOR INCLINATION AND SOLAR	by this Acceptable Solution. 5.0.2 Water storage tanks that form part			ORS FO		NATION A	ND SOI	AR
Inclination angle (degrees)	of a solar water heater must have drain		ONIEI	TATIO		clination ar	ngle (de	grees)
Direction (degrees) 0° 20° 40° 60° 80° 90°	pipes that:		Direct (degre		0°	20° 40°	60°	80°
West 270 0.85 0.85 0.8 0.72 0.6 0.53	 a) have an easily reached isolating valve, and terminate with a cap or plug to empty 		West			0.85 0.8		
300 0.85 0.92 0.92 0.86 0.73 0.65	the vessel for maintenance, or			300	0.85	0.92 0.93	2 0.86	0.7
330 0.85 0.98 0.99 0.93 0.8 0.71	b) terminate outside the <i>building</i> with a			330	0.85	0.98 0.9	9 0.93	0.8
North 0 0.85 0.97 1 0.94 0.8 0.7	cap only.		North	0	0.85	0.97 1	0.94	0.8
30 0.85 0.94 0.95 0.88 0.74 0.65	5.0.3 Fixings used for the installation of a solar <i>water heater</i> must meet the			30		0.94 0.9		
60 0.85 0.88 0.86 0.77 0.65 0.57	requirements described in Paragraphs 2.1.1,			60		0.88 0.8		
East 90 0.85 0.8 0.73 0.64 0.52 0.46 Good Moderate Poor	2.1.2, 2.1.3 and 2.1.4.		East	90		0.8 0.7 Moderate	3 0.64	
prientation orientation orientation	5.0.4 All metal swarf from drilling or cutting must be removed from the roof surface to		orient	ation		orientation		Poo
	prevent corrosion. Care must also be taken							
The relative performance of flat-plate collectors in different orientations is illustrated. It is clear that	to avoid scratching of any roof <i>cladding</i> protective coating.					ance of flat- s is illustrat		
collectors should face within about 45° of north, and	5.1 Wetback water heaters		col	lectors sl	hould fa	ce within al	oout 45°	of no
be fitted at an inclination angle between 20° and 50°. If for some reason it were necessary to place the	5.1.1 Where water is heated by a wetback					ation angle it were nece		
collectors facing the west at 60° inclination, then to	water heater and a solar collector,		col	lectors fa	acing the	e west at 60	0° inclina	ation, t
avoid loss in performance, the collectors would have to be 1/0.72 (or 1.4) as large (i.e. increased by 40%	independent water pipe circuits must be installed for each heat source.		to	be 1/0.72	2 (or 1.4)	mance, the as large (i.)		
in the collector area). Where collectors other than flat-plate type (cylindrical	5.1.2 A wetback water heater must have			he collec nere colle		ı). ner than flat-	-plate tvr	e (cvli
shape for instance) are used, similar optimum requirements for orientation will apply (i.e. the axis	an open-vent connected to the:		sha	ape for in	stance)	are used, s ientation wi	imilar op	otimun
of the cylinder should be inclined at 20° to 50°).	a) <i>water tank</i> , or		of	the cyling	der shou	Id be incline	ed at 20°	° to 50
The performance loss by using poorer orientation has not been as fully explored as for the flat-plate case.	 b) wetback water heater flow pipe (see G12/AS1 Figure 5). 		no	been as	fully ex	ss by using plored as fo	or the fla	it-plate
	COMMENT:					5 4614: 1986 tandards Ne		
Figure 12 from NZS 4614: 1986 is reproduced with the permission of Standards New Zealand under			Lic	ence 684	l.			
	In Paragraph 5.1.2 (b) a heat-exchanger is required when the tank pressure is higher than the open-vented					lectors sho		

Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS	:		
5.2 Weathertightness	must k	5.2.3 Penetration must be as show5.2.4 Pipe penetr	
5.2.1 Any penetrations m cladding during the instal water heater must be flas purpose-made sealing wa prevent leaks.	roofs r	nust be fla boot <i>flash</i>	
5.2.2 Where roof penetra for large openings such a installed in or below the i	s solar collectors		
 a) the edge of roofing pe 200 mm wide must be direction with additiona in Figure 3, and 	e supported in either		
b) for the catchment area the penetration as sho the roof length must b areas shown in Table 4	wn in Figure 4, e limited to the		
Table 4: Maximum cate Paragraph 5.2.2	hment areas above pe	enetrations grea	ter than 200
r diagraph 0.2.2	5,		_
Penetration width	Maximum roof len	gth above pene	tration in m
	Maximum roof len Profiled metal		
Penetration width	Maximum roof len Profiled metal Corrugated	Trapezoidal	Trough
	Maximum roof len Profiled metal		
Penetration width 800 to 1200 mm	Maximum roof len Profiled metal Corrugated 4 m	Trapezoidal 8 m	Trough
Penetration width 800 to 1200 mm 600 to 800 mm 400 to 600 mm 200 to 400 mm	Maximum roof len Profiled metal Corrugated 4 m 6 m 8 m	Trapezoidal 8 m 12 m 16 m 18 m	Trough 16 18 18 18 18 8 4: Catch
Penetration width 800 to 1200 mm 600 to 800 mm 400 to 600 mm 200 to 400 mm Figure 3: Support for per 200 mm wide Paragraph 5.2.2	Maximum roof len Profiled metal Corrugated 4 m 6 m 8 m 12 m	Trapezoidal 8 m 12 m 16 m 18 m Figure NOTE:	Trough 16 18 18 18 e 4: Catch greate Parage
Penetration width 800 to 1200 mm 600 to 800 mm 400 to 600 mm 200 to 400 mm Figure 3: Support for pe 200 mm wide	Maximum roof len Profiled metal Corrugated 4 m 6 m 8 m 12 m	Trapezoidal 8 m 12 m 16 m 18 m Figure Table 4 penetr	Trough 16 18 18 18 18 e 4: Catch greate Parage Profiled meta 4 for maximum
Penetration width 800 to 1200 mm 600 to 800 mm 400 to 600 mm 200 to 400 mm 750 mm wide margraph 5.2.2 Trim opening using 50 mm wide timber. Trimmer depth to	Maximum roof len Profiled metal Corrugated 4 m 6 m 8 m 12 m netration greater than a)	Trapezoidal 8 m 12 m 16 m 18 m Figure Table 4 penetr	Trough 16 18 18 18 18 e 4: Catch greate Parage Profiled meta 4 for maximum ations

52

Acceptable Solution G12/AS2

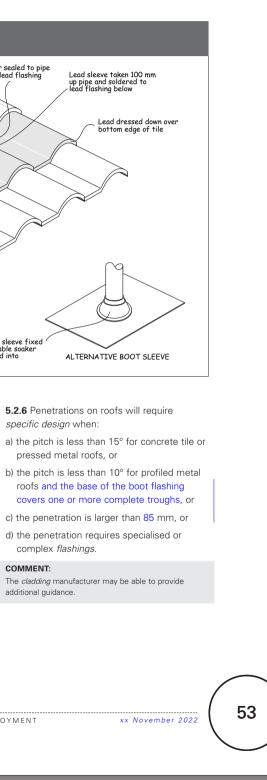
ions through masonry tile roofs own in Figure 5.

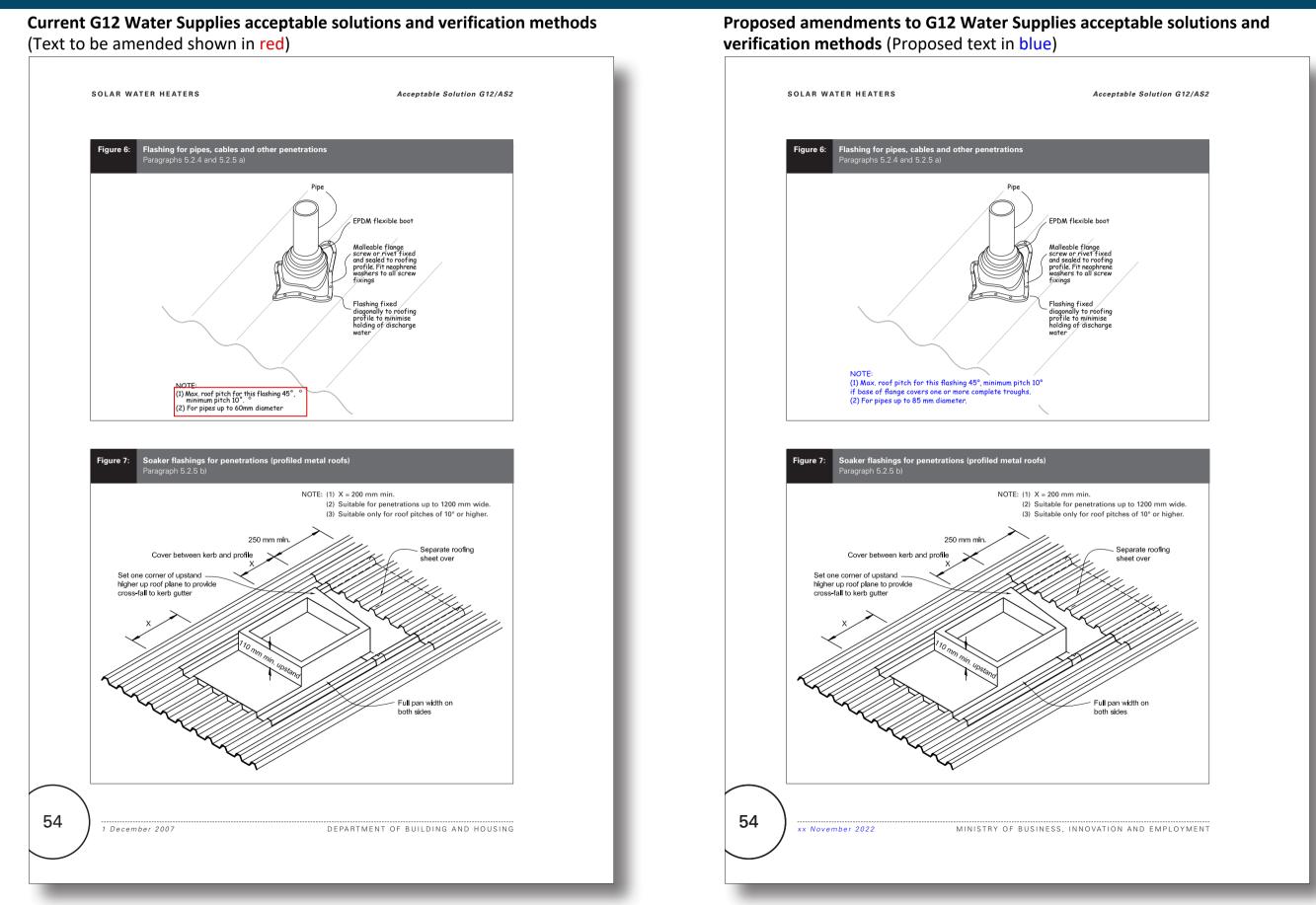
etrations in pressed metal tile flashed using *EPDM* or silicone *ashings* as shown in Figure 6.

200 mm wide			
n metres			
ugh profile	Other roofs		
16 m	4 m		
18 m	6 m		
18 m	8 m		
18 m	10 m		

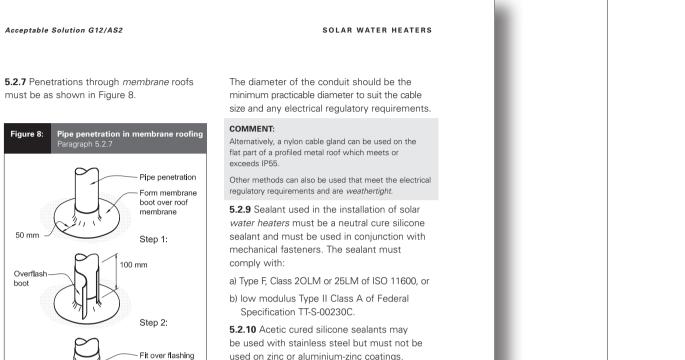
tchment area for penetrations eater than 200 mm wide – see table 4 ragraph 5.2.2 b)

metalled roofing refer to imum roof lengths above


NT OF BUILDING AND HOUSING


Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red) Acceptable Solution G12/AS2 SOLAR WATER HEATERS Pipe penetration for masonry tile roof Paragraph 5.2.3 Collar sealed to pipe over lead flashing Lead sleeve taken 100 mm up pipe and soldered to lead flashing below Lead carried to top edge of tile under the Lead dressed down over bottom edge of tile Lead flashing dressed to roofing tile min. 150 mm all round and carried up to top edge of tile Concrete tiles EPDM flexible boot sleeve fixed and sealed to malleable soaker flashing and dressed into roofing profile ALTERNATIVE BOOT SLEEVE **5.2.5** Roof penetrations in profiled metal roofs 5.2.6 Penetrations on roofs will require must be flashed as follows. specific design when: a) Pipe penetrations up to 60 mm diameter a) the pitch is less than 15° for concrete tile or must be flashed using an *EPDM* boot pressed metal roofs, or flashing as shown in Figure 6, and b) the pitch is less than 10° for profiled metal b) Rectangular penetrations up to 1200 mm roofs, or wide must be flashed using a soaker type c) the penetration is larger than 60 mm, or flashing as shown in Figure 7. d) the penetration requires specialised or complex flashings. COMMENT: The *cladding* manufacturer may be able to provide additional guidance. 53 DEPARTMENT OF BUILDING AND HOUSING 1 December 2007

verification methods (Proposed text in blue) Acceptable Solution G12/AS2 Pipe penetration for masonry tile roof Paragraph 5.2.3 Collar sealed to pipe over lead flashing Lead carried to top edge of tile under the overlap Lead flashing dressed to roofing tile min. 150 mm all round and carried up to top edge of tile Concrete tiles EPDM flexible boot sleeve fixed and sealed to malleable soaker flashing and dressed into roofing profile **5.2.5** Roof penetrations in profiled metal roofs must be flashed as follows. a) Pipe penetrations up to 85 mm diameter must be flashed using an EPDM boot flashing as shown in Figure 6, and b) Rectangular penetrations up to 1200 mm wide must be flashed using a soaker type *flashing* as shown in Figure 7. COMMENT: MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT


Proposed amendments to G12 Water Supplies acceptable solutions and

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

5.2.11 Sealants used on roof penetrations must not be used as the primary method of excluding the ingress of moisture. Joints must be designed to allow the discharge of water in the absence of any sealant.

5.2.12 All fixings or penetrations through the roof must be through the crests of the roof *cladding*.

5.3 Pipe installation

Step 3:

5.2.8 One method of *flashing* penetrations

DEPARTMENT OF BUILDING AND HOUSING

is shown in Figure 9.

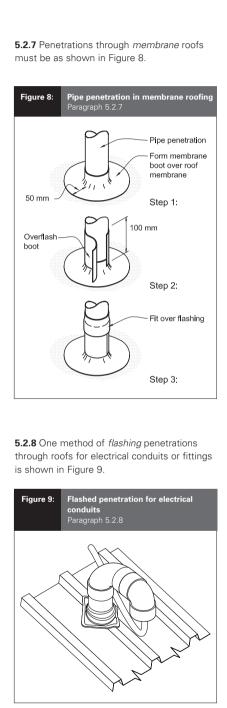
through roofs for electrical conduits or fittings

5.3.1 Pipes and their supports must be electrochemically compatible or be electrolytically separated (refer to Table 2).

5.3.2 Pipes must be installed and supported to permit thermal movement, except where anchor points are necessary

5.3.3 Water supply pipe work must be supported at centres of no greater than those given in G12/AS1, Table 7: Water Supply Pipework Support Spacing.

5.4 Pipe insulation


5.4.1 Hot water pipes must be insulated to satisfy the requirements of NZBC Clause H1.3.4, except where connected to a heat dissipation device.

1 December 2007

55

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G12/AS2

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

comply with:

COMMENT

Pipework Support Spacing 5.4 Pipe insulation dissipation device.

5.4.1 Hot water pipes must be insulated to satisfy the requirements of NZBC Clause H1.3.4, except where connected to a heat

50 m

Overflas

SOLAR WATER HEATERS The diameter of the conduit should be the minimum practicable diameter to suit the cable size and any electrical regulatory requirements. Alternatively, a nylon cable gland can be used on the flat part of a profiled metal roof which meets or exceeds IP55. Other methods can also be used that meet the electrical regulatory requirements and are *weathertight*. 5.2.9 Sealant used in the installation of solar water heaters must be a neutral cure silicone sealant and must be used in conjunction with mechanical fasteners. The sealant must a) Type F, Class 20LM or 25LM of ISO 11600, or b) low modulus Type II Class A of Federal Specification TT-S-00230C. 5.2.10 Acetic cured silicone sealants may be used with stainless steel but must not be used on zinc or aluminium-zinc coatings. 5.2.11 Sealants used on roof penetrations must not be used as the primary method of excluding the ingress of moisture. Joints must be designed to allow the discharge of water in the absence of any sealant. 5.2.12 All fixings or penetrations through the roof must be through the crests of the roof *cladding*. 5.3 Pipe installation **5.3.1** Pipes and their supports must be electrochemically compatible or be electrolytically separated (refer to Table 2). **5.3.2** Pipes must be installed and supported to permit thermal movement, except where anchor points are necessary

5.3.3 Water supply pipe work must be supported at centres of no greater than those given in G12/AS1, Table 9: Water Supply

xx November 2022

55

Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS

Acceptable Solution G12/AS2

5.4.2 Where closed cell elastomeric pipe insulation is used outside the building envelope, it must be painted or have another form of protection to prevent rapid deterioration due to exposure to UV radiation. Pipe insulation must be protected and must have a *durability* of not less than 5 years.

COMMENT

One way to meet the hot water pipe insulation requirements referred to in Paragraph 5.4.1 is to comply with NZS 4305: 1996 Domestic type hot water systems.

6.0 Structural Support for Solar Water Heaters

6.1 Scope

6.1.1 Paragraph 1.1.1 of this Acceptable Solution describes when these structural and fixing requirements can be used.

6.2 General requirements

6.2.1 The installation of solar collectors on roofs must not produce restrictions to rainwater flow that could cause water to accumulate or pond.

6.2.2 The installation of solar collectors must not dent, bend or distort the roof *cladding* or damage any protective coatings.

6.2.3 All fixings that penetrate metal *cladding* must be provided with sealing washers or boots to prevent leakage in accordance with Paragraph 5.2.

COMMENT: For additional guidance on selection and application of fastenings, refer to the roof *cladding* manufacturer.

6.2.4 Solar collectors must be supported at no less than four points. The outermost support points must be within 200 mm of the outside edge of the solar collector.

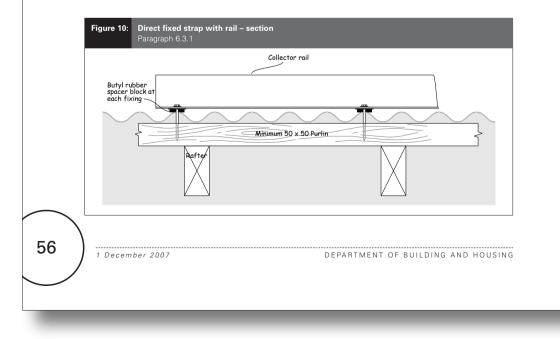
6.2.5 Roof framing must not be reduced in strength except for drilling for bolts or screws for attaching solar collectors.

6.2.6 All screw and bolt fixings into roof framing timber must be installed with minimum distances from the centre of the fixing to the edge of the timber of:

a) 20 mm for 8 gauge screws,

b) 25 mm for 14 gauge screws,

c) 40 mm for 10 mm bolts


6.2.7 The centre of all fixings must be no closer than 10 fixing diameters from the end of a piece of timber.

COMMENT:

End and edge distances for fixings are in accordance with NZS 3603: 1993.

6.3 Direct fixed solar collectors parallel to the roof

6.3.1 Solar collectors can be fixed directly to the roof as shown in Figures 10 and 11 or Figures 12 and 13, where the requirements described in Paragraph 6.3 are met.

SOLAR WATER HEATERS

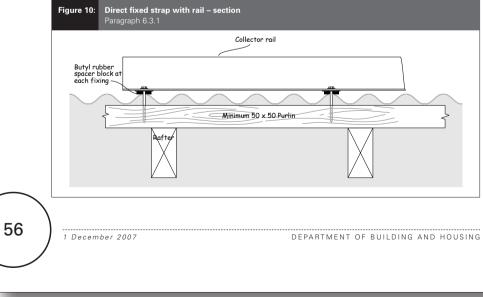
5.4.2 Where closed cell elastomeric pipe insulation is used outside the building envelope, it must be painted or have another form of protection to prevent rapid deterioration due to exposure to UV radiation. Pipe insulation must be protected and must have a *durability* of not less than 5 years.

COMMENT

One way to meet the hot water pipe insulation requirements referred to in Paragraph 5.4.1 is to comply with NZS 4305: 1996 Domestic type hot water systems.

6.0 Structural Support for Solar Water Heaters

6.1 Scope


6.1.1 Paragraph 1.1.1 of this Acceptable Solution describes when these structural and fixing requirements can be used.

6.2 General requirements

6.2.1 The installation of solar collectors on roofs must not produce restrictions to rainwater flow that could cause water to accumulate or pond.

6.2.2 The installation of solar collectors must not dent, bend or distort the roof *cladding* or damage any protective coatings.

6.2.3 All fixings that penetrate metal *cladding* must be provided with sealing washers or boots to prevent leakage in accordance with Paragraph 5.2.

of a piece of timber. COMMENT

with NZS 3603: 1993.

COMMENT:

parallel to the roof 6.3.1 Solar collectors can be fixed directly to the roof as shown in Figures 10 and 11 or Figures 12 and 13, where the requirements described in Paragraph 6.3 are met.

Acceptable Solution G12/AS2

For additional guidance on selection and application of fastenings, refer to the roof *cladding* manufacturer.

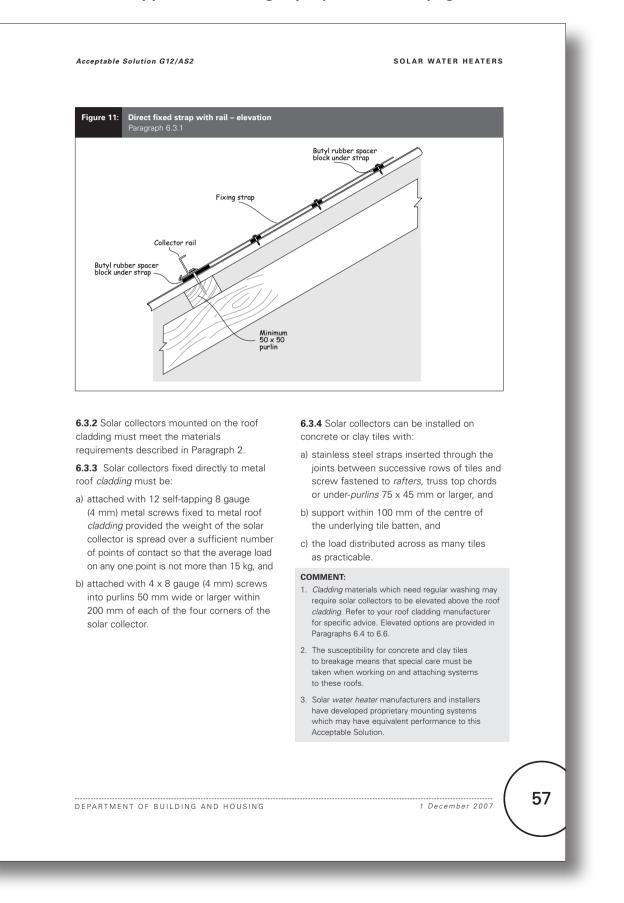
6.2.4 Solar collectors must be supported at no less than four points. The outermost support points must be within 200 mm of the outside edge of the solar collector.

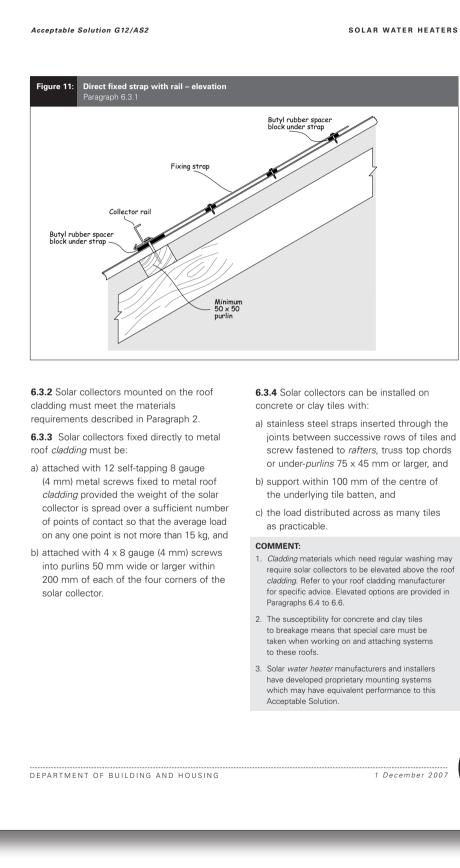
6.2.5 Roof framing must not be reduced in strength except for drilling for bolts or screws for attaching solar collectors.

6.2.6 All screw and bolt fixings into roof framing timber must be installed with minimum distances from the centre of the fixing to the edge of the timber of:

a) 20 mm for 8 gauge screws,

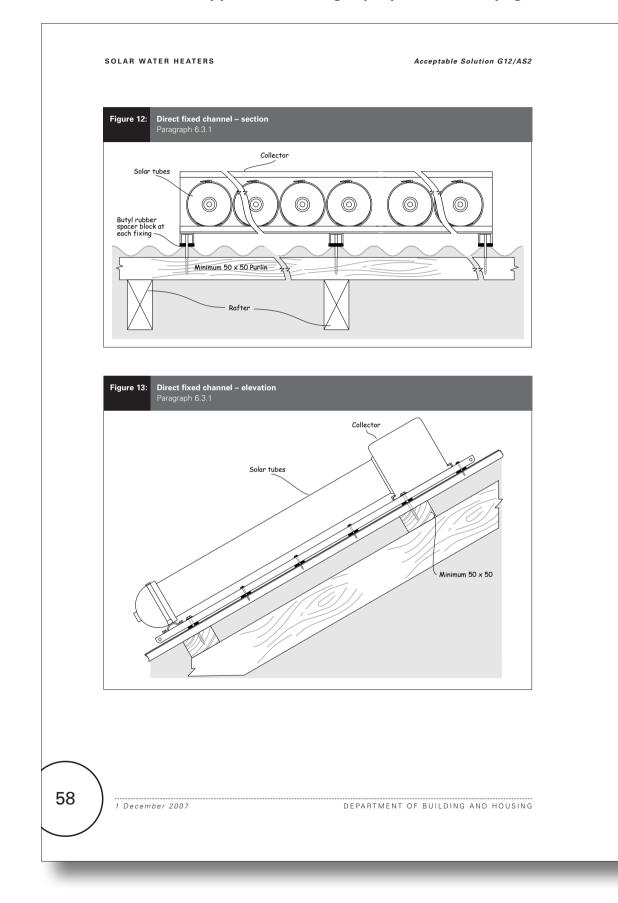
b) 25 mm for 14 gauge screws,

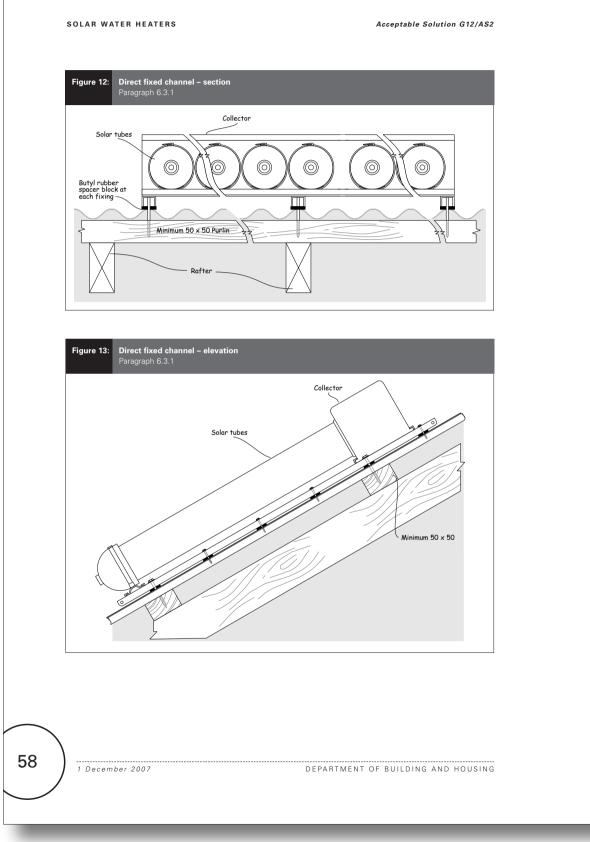

c) 40 mm for 10 mm bolts.

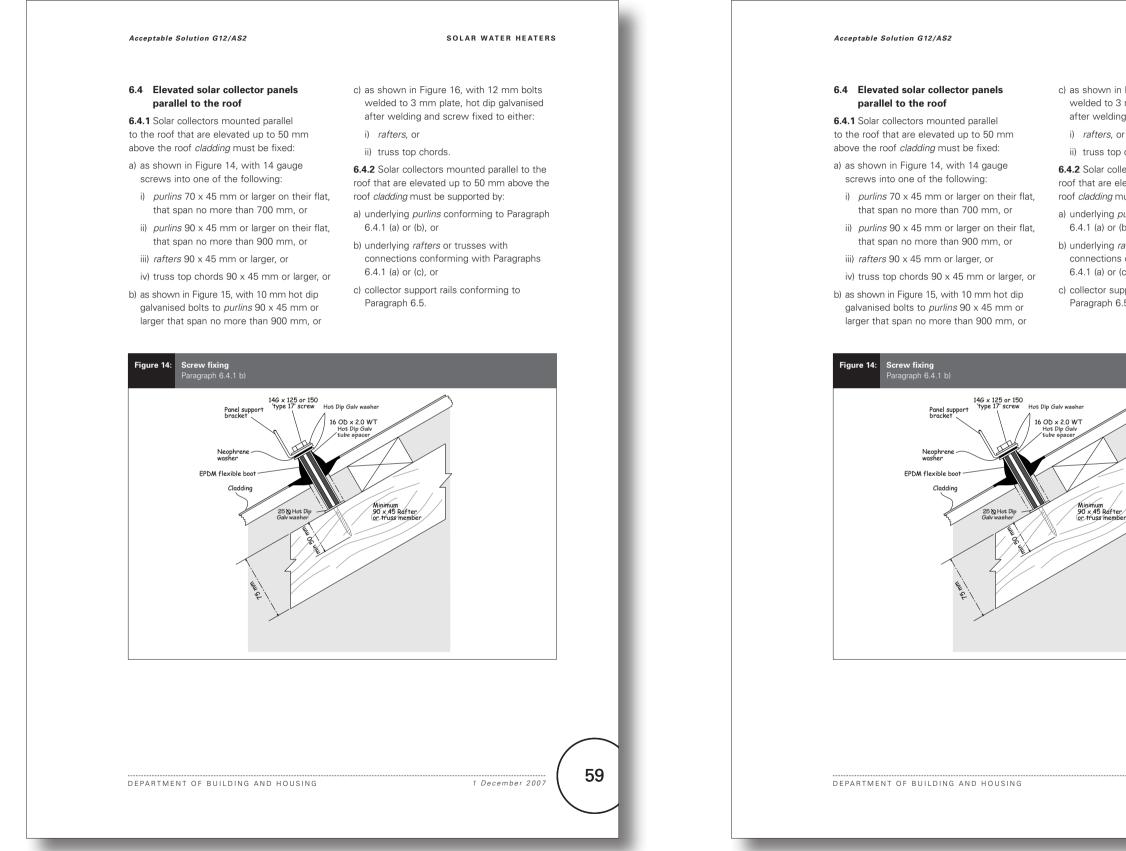

6.2.7 The centre of all fixings must be no closer than 10 fixing diameters from the end

End and edge distances for fixings are in accordance

6.3 Direct fixed solar collectors


Proposed G12 Water Supplies - No changes proposed to this page




57

Proposed G12 Water Supplies - No changes proposed to this page

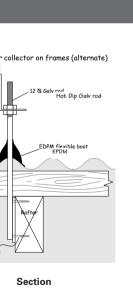
Proposed G12 Water Supplies - No changes proposed to this page

c) as shown in Figure 16, with 12 mm bolts welded to 3 mm plate, hot dip galvanised after welding and screw fixed to either:

- ii) truss top chords.

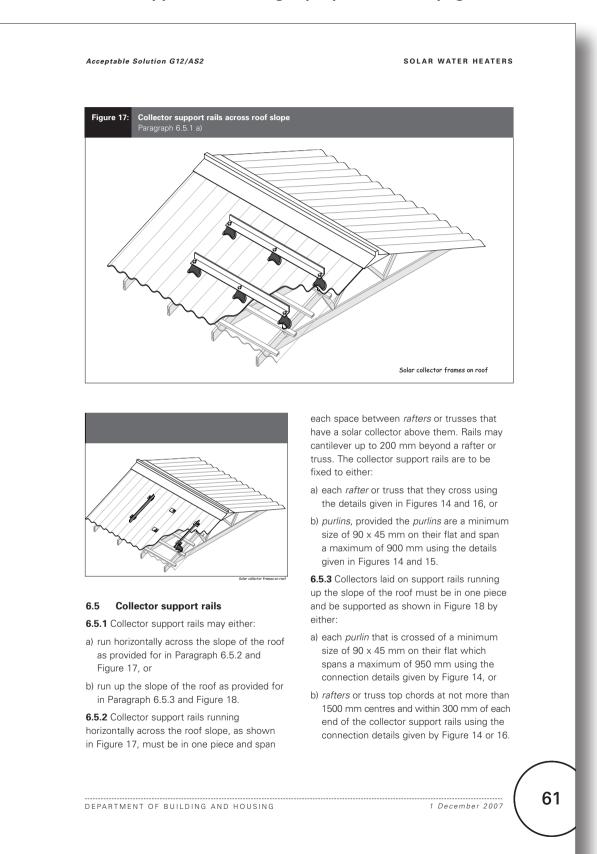
6.4.2 Solar collectors mounted parallel to the roof that are elevated up to 50 mm above the roof *cladding* must be supported by:

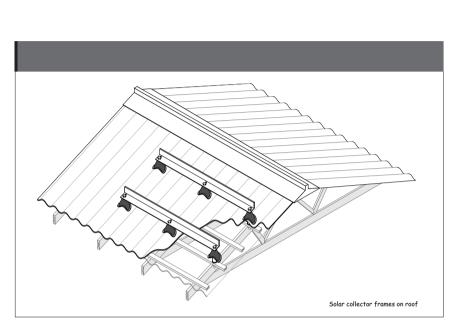
a) underlying *purlins* conforming to Paragraph 6.4.1 (a) or (b), or

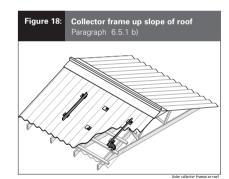

b) underlying rafters or trusses with connections conforming with Paragraphs 6.4.1 (a) or (c), or

c) collector support rails conforming to

lipimum 0 x45 Rofter e truss member	
	9


Proposed G12 Water Supplies - No changes proposed to this page **Current G12 Water Supplies - No changes proposed to this page** SOLAR WATER HEATERS Acceptable Solution G12/AS2 SOLAR WATER HEATERS Figure 15: Bolt fixing Paragraph 6.4.1 a) **Bolt fixing** Paragraph 6.4.1 a) iaure 15: Support point for collector parallel to roof Support point for collector parallel to re Collector support Collector support 10 & Hot Dip Galv bolt 10 & Hot Dip Galv bolt Collector Collector - Hot Dip Galv washer .16 OD x 2.0 WT Hot Dip Galv tube spacer → Hot Dip Galv washer _16 OD × 2.0 WT Hot Neophrene washer Neophrene washer EPDM flexible boot EPDM flexible boot 90 x 45 Purlin 90 x 45 Purlin 25 & Hot Dip Galv washer 25 & Hot Dip Galv washe Rafter Rafte **Stud fixing** Paragraph 6.4.1 c) **Stud fixing** Paragraph 6.4.1 c) re 16: Figure 16: 12 & Hot Dip Galv roo Support point for collector on frames (alternate) Support point for collector on frames (alternate) , 12 & Galv rod Hot Dip Galv rod 12 & Galv rod Hot Dip Galv rod Collector Collector Rafter o Rafte Collector suppor Collector suppor Ø 3 mm thick Hot Dip Galv PM flexible boot 8 Ga screws min 35 mm long 8 Ga screws min 35 mm la 8 Ga screws min 35 mm long Support point for collector on frames Support point for collector on frames Elevation Section Elevation Section 60 60 1 December 2007 1 December 2007 DEPARTMENT OF BUILDING AND HOUSING DEPARTMENT OF BUILDING AND HOUSING


Acceptable Solution G12/AS2	
pof	
r Dip Galv tube spacer t	



Proposed G12 Water Supplies - No changes proposed to this page

Acceptable Solution G12/AS2

6.5 Collector support rails

6.5.1 Collector support rails may either:

- a) run horizontally across the slope of the roof as provided for in Paragraph 6.5.2 and
- Figure 17, or b) run up the slope of the roof as provided for
- in Paragraph 6.5.3 and Figure 18.

6.5.2 Collector support rails running horizontally across the roof slope, as shown in Figure 17, must be in one piece and span

DEPARTMENT OF BUILDING AND HOUSING

ed for b) /

}

SOLAR WATER HEATERS

each space between *rafters* or trusses that have a solar collector above them. Rails may cantilever up to 200 mm beyond a rafter or truss. The collector support rails are to be fixed to either:

a) each *rafter* or truss that they cross using the details given in Figures 14 and 16, or

 b) *purlins*, provided the *purlins* are a minimum size of 90 x 45 mm on their flat and span a maximum of 900 mm using the details given in Figures 14 and 15.

6.5.3 Collectors laid on support rails running up the slope of the roof must be in one piece and be supported as shown in Figure 18 by either:

a) each *purlin* that is crossed of a minimum size of 90 x 45 mm on their flat which spans a maximum of 950 mm using the connection details given by Figure 14, or

 b) rafters or truss top chords at not more than 1500 mm centres and within 300 mm of each end of the collector support rails using the connection details given by Figure 14 or 16.

1 December 2007

61

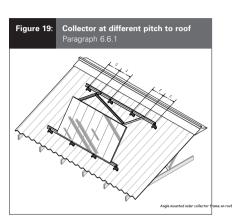
Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS

Acceptable Solution G12/AS2

6.6 Mounting collectors at a different pitch to the roof cladding

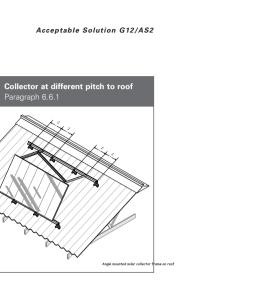
6.6.1 Solar collectors mounted at a different pitch to the pitch of the roof must be installed with no less than 8 fixing points and must meet all the requirements described in Paragraph 6.6 and Figure 19.


6.6.2 Solar collectors must be mounted on support rails running horizontally across the roof slope that comply with Paragraph 6.5.2 except for the following differences:

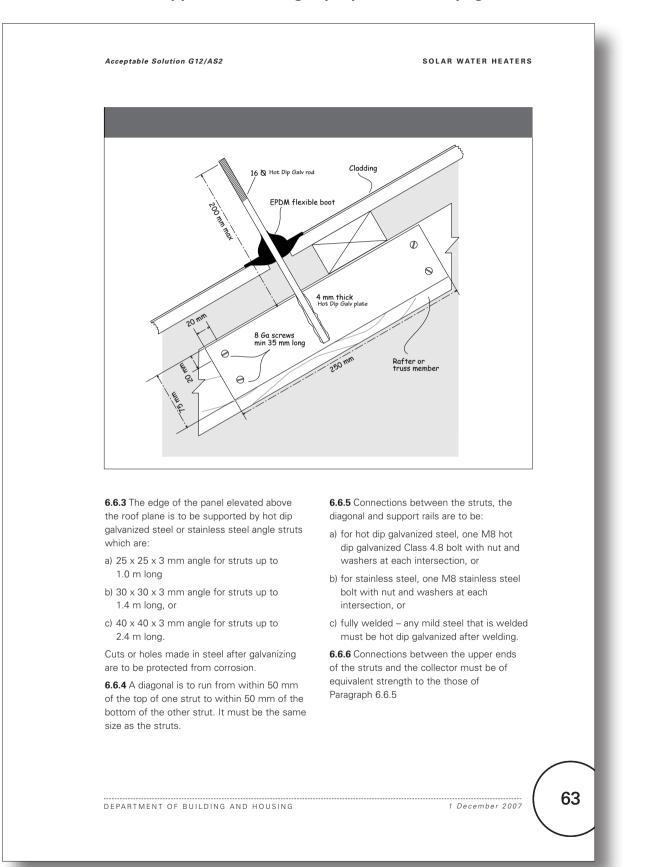
- a) they must be supported by four *rafters* or truss top chords, and
- b) they must be hot dip galvanised mild steel or stainless steel angles with a minimum section modulus about axes parallel to the sides of the angle of 3.3 cm³ x 10 mm³, and
- c) they must be connected to the *rafters* or truss top chords with fixings as shown in Figure 20, and
- d) the connections between the struts and the collector support rails must be mid-way between the outer pair of collector support rail fixings.

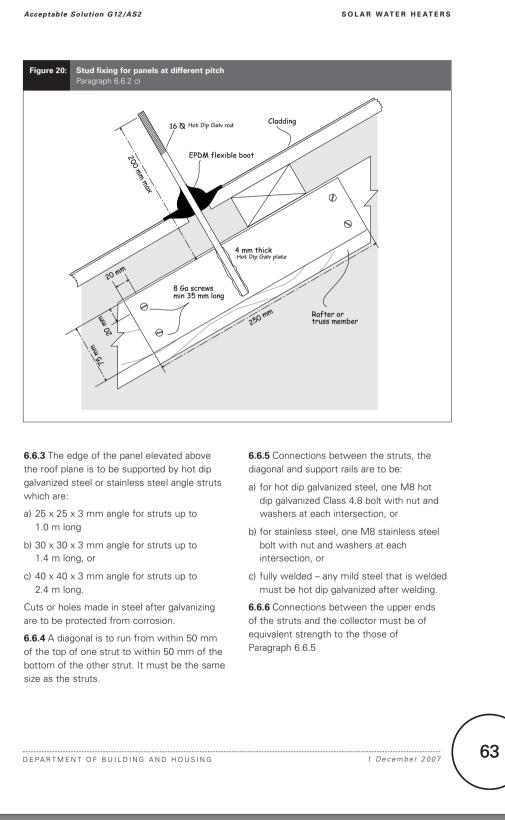
COMMENT:

- 1. A steel angle section 50 x 50 x 6 mm meets the minimum strength requirements of Paragraph 6.6.2.
- Other materials can be used for the support rails which meet the materials requirements described in Paragraph 2.0 and have equivalent strength to the rails described in Paragraph 6.6.2 b).



	 6.6 Mounting collectors at a different pitch to the roof cladding 6.6.1 Solar collectors mounted at a different pitch to the pitch of the roof must be installed with no less than 8 fixing points and must meet all the requirements described in Paragraph 6.6 and Figure 19. 6.6.2 Solar collectors must be mounted on 	Figure
	 pitch to the pitch of the roof must be installed with no less than 8 fixing points and must meet all the requirements described in Paragraph 6.6 and Figure 19. 6.6.2 Solar collectors must be mounted on 	
	support rails running horizontally across the roof slope that comply with Paragraph 6.5.2 except for the following differences:	K
	 a) they must be supported by four <i>rafters</i> or truss top chords, and 	
	 b) they must be hot dip galvanised mild steel or stainless steel angles with a minimum section modulus about axes parallel to the sides of the angle of 3.3 cm³ x 10 mm³, and 	
	c) they must be connected to the <i>rafters</i> or truss top chords with fixings as shown in Figure 20, and	
	 d) the connections between the struts and the collector support rails must be mid-way between the outer pair of collector support rail fixings. 	
	COMMENT:	
	1. A steel angle section 50 x 50 x 6 mm meets the minimum strength requirements of Paragraph 6.6.2.	
	 Other materials can be used for the support rails which meet the materials requirements described in Paragraph 2.0 and have equivalent strength to the rails described in Paragraph 6.6.2 b). 	
62		DEI


1 December 2007


62

TMENT OF BUILDING AND HOUSING

Proposed G12 Water Supplies - No changes proposed to this page

Proposed G12 Water Supplies - No changes proposed to this page

SOLAR WATER HEATERS

Acceptable Solution G12/AS2

6.6.7 Alternatively, proprietary elevated frames can be used which:

a) meet the requirements described in Paragraphs 6.6.1 and 6.6.2

b) are subject to specific engineering design c) result in the load on each collector support rail being evenly distributed over each of the four fixing points.

7.0 Maintenance and Durability

7.1 Maintenance

7.1.1 A permanent label must be fixed to a prominent part of the system which includes all markings required in the appropriate Standard identified in Paragraph 3.1.1.

COMMENT

- 1. Solar water heaters should be installed so that they can be easily maintained and owners should be provided with adequate instructions on the maintenance requirements
- 2. Maintenance should be carried out to achieve the required:

a) system performance, and

- b) durability of the solar water heater and any
- affected building components and junctions. 3. The maintenance required is dependent on the:
- a) type of solar water heater,
- b) materials and components used in the system manufacture and installation.
- c) manufacturer's recommendations
- d) position of the solar water heater on the building,
- e) geographical location and specific site conditions.

COMMENT:

Washing by rain removes most accumulated atmospheric contaminants from roof *cladding*, but sheltered areas below solar collectors may be protected from the direct effects of rain and therefore may require regular manual washing. High pressure water must not be directed at sensitive junctions such as penetrations and other *flashings*. Care must be taken to avoid water being driven past anti-capillary gaps and flashings.

64

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

7.2.1 Solar water heaters and their components must meet the *durability* requirements specified in NZBC Clause B2.

7.2.2 A solar water heater is easy to access and moderately difficult to replace and therefore the *durability* requirement is 15 years.

7.2.3 Some components of the system will require maintenance and/or replacement. Components requiring maintenance or replacement before 15 years must be clearly identified in the owner's manual

COMMENT:

7.2 Durability

NZS 4613:1986 states that:

"All materials used in the construction of solar equipment must have an expected in-service life of at least 15 years unless specifically excluded by the manufacturer" (Clause 103.2), and

"Collectors must have an expected service life of at least 15 years with no loss of fitness for purpose or rapid degradation during this period" (Clause 104.1).

NZS 4613: 1986 has been incorporated by reference in the Acceptable Solutions for G12 since October 2001. Amend 9 Feb 2014

SOLAR WATER HEATERS

6.6.7 Alternatively, proprietary elevated frames can be used which:

a) meet the requirements described in Paragraphs 6.6.1 and 6.6.2

b) are subject to specific engineering design c) result in the load on each collector support rail being evenly distributed over each of the four fixing points.

7.0 Maintenance and Durability

7.1 Maintenance

7.1.1 A permanent label must be fixed to a prominent part of the system which includes all markings required in the appropriate Standard identified in Paragraph 3.1.1.

COMMENT

- 1. Solar water heaters should be installed so that they can be easily maintained and owners should be provided with adequate instructions on the maintenance requirements
- 2. Maintenance should be carried out to achieve the required:

a) system performance, and

b) durability of the solar water heater and any affected building components and junctions

3. The maintenance required is dependent on the:

a) type of solar water heater

b) materials and components used in the system manufacture and installation.

c) manufacturer's recommendations,

d) position of the solar water heater on the building,

e) geographical location and specific site conditions.

14 February 2014

COMMENT:

Washing by rain removes most accumulated atmospheric contaminants from roof *cladding*, but sheltered areas below solar collectors may be protected from the direct effects of rain and therefore may require regular manual washing. High pressure water must not be directed at sensitive junctions such as penetrations and other *flashings*. Care must be taken to avoid water being driven past anti-capillary gaps and flashings.

64

14 February 2014

Acceptable Solution G12/AS2

7.2 Durability

15 years.

COMMENT:

7.2.1 Solar water heaters and their components must meet the *durability* requirements specified in NZBC Clause B2.

7.2.2 A solar water heater is easy to access and moderately difficult to replace and therefore the *durability* requirement is

7.2.3 Some components of the system will require maintenance and/or replacement. Components requiring maintenance or replacement before 15 years must be clearly identified in the owner's manual

NZS 4613:1986 states that:

"All materials used in the construction of solar equipment must have an expected in-service life of at least 15 years unless specifically excluded by the manufacturer' (Clause 103.2), and

"Collectors must have an expected service life of at least 15 years with no loss of fitness for purpose or rapid degradation during this period" (Clause 104.1).

NZS 4613: 1986 has been incorporated by reference in the Acceptable Solutions for G12 since October 2001. Armend 9 Feb 2014

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current G12 Water Supplies acceptable solutions and verification methods (Text to be amended shown in red)

Proposed amendments to G12 Water Supplies acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G12/AS3

Acceptable Solution G12/AS3

1.0 AS/NZS 3500.1 and AS/NZS 3500.4

1.0.1 AS/NZS 3500.1 and AS/NZS 3500.4 are Acceptable Solutions as modified by Paragraphs 1.0.3 and 1.0.4, for the design and installation of cold and heated *water supply systems*.

1.0.2 Buildings having the classification of Community Care (e.g. hospitals, old people's homes, prisons) to which this Acceptable Solution is applied shall be provided with cold water storage of no less than 50 litres per person in accordance with the requirements of Acceptable Solution G12/AS1 Paragraph 5.1.1 Water storage.

1.0.3 Modifications to AS/NZS 3500.1

Clause 2.2 Delete and replace with "Materials and products shall comply with NZBC Clause B2 Durability, and G12/AS1 Paragraph 2.0 Materials".

1.0.4 Modifications to AS/NZS 3500.4

Clause 2.2 Delete and replace with "Materials and products shall comply with NZBC Clause B2 Durability, and G12/AS1 Paragraph 2.0 Materials".

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current G12 Water Supplies acceptable solutions and verification methods Proposed amendments to G12 Water Supplies acceptable solutions and (Text to be amended shown in red) verification methods (Proposed text in blue)

64B

Proposed G12 Water Supplies - No changes proposed to this page

All references to Verification Methods and Acceptable respectively.	Solutions are preceded by VM
respectively.	
Backflow protection	
air gaps	
backflow prevention devices	
atmospheric vacuum breakers AS1 3.6.2, 3. double check valves	
pressure vacuum breakers AS1 3.6.1, 3.	
reduced pressure zone devices AS1 3.6.2, 3.	
installation	3.6.3, 3.6.4, 3.7.1
testing	AS1 3.7
Cold water expansion valves	
(expansion control valves)	
	es 8 to 10, Table 6
installationrelief valve drains AS1 6.7, Figur	
-	
Cross connections	/
hazard	
Energy cut-offs	AS1 6.4.1 c), 6.5.2
Equipotential bonding	AS1 9.0
earth bonding conductors	AS1 9.3
installation of conductors	
metallic sanitary fixtures	-
Filters	see Strainers
Hot water supply	
pipe sizes	AS1 6.12, Table 4
Identification of non-potable water supply	AS1 4.2.1
Isolating valves	. AS1 3.7.1, 5.4.2
Legionella bacteria	AS1 6.14.3
Mixing devices	
tempering valves	6.14.2, Figure 16
Non-potable water supply	AS1 4 1
outlet identification	
Non-return valves AS1 Figure	es 7 to 10, Table 6
Operating device	6.3
People with disabilities	
usable water taps	

65

Index G12/VM1 & AS1/AS2 Index G12/VM1 & AS1/AS2

All references to Verification Methods and Acceptable Solutions are preceded by VM or AS respectively.

Backflow protection
air gaps
Cold water expansion valves
(expansion control valves)
installation
Cross connections
Energy cut-offs AS
Equipotential bonding
Filters
Hot water supply
Identification of non-potable water supply
Isolating valves
Legionella bacteria
Mixing devices tempering valves
Non-potable water supply
Non-return valves
Operating device
People with disabilities

DEPARTMENT OF BUILDING AND HOUSING

WATER SUPPLIES

. **AS1** 3.5 **AS1** 3.6 6.4, 3.7.1, Table 2 6.2, 3.7.2, Table 2 6.4, 3.7.1, Table 2 6.4, 3.7.2, Table 2 3.6.3, 3.6.4, 3.7.1 **AS1** 3.7 6.3.3, 6.6.2, 6.6.3, s 8 to 10, Table 6 **AS1** 6.6.5 s 8 to 10, and 13 **AS1** 3.1, **AS1** 3.3 **S1** 6.4.1 c), 6.5.2 **AS1** 9.0 **AS1** 9.3 **AS1** 9.2 **1** 9.2.2, Figure 20 **1** 7.2.1, Figure 19 . . . see Strainers **AS1** 6.0 AS1 6.12, Table 4 **AS1** 4.2.1 **AS1** 3.7.1, 5.4.2 **AS1** 6.14.3 6.14.2, Figure 16 **S1** 4.2.1, Figure 3 s 7 to 10, Table 6 6.3 **AS1** 8.0 . AS1 Figure 18 65 1 December 2007

Proposed G12 Water Supplies - No changes proposed to this page

	Index G12/VM1 & AS
Potable water supply	AS1 3.0, 4.0
Pressure limiting valves AS1 5.3.3, 6.2.1, Figu	ıre 8, Table 6
Pressure reducing valves AS1 5.3.2, 6.2.1, Figures 7 a	nd 9, Table 6
Pressure relief valves	AS1 6.6.5
Relief valve drains see Cold water expanded on the contract of the contr	ef valves and
Safe trays AS1	5.2.3, 6.11.3
Safe water temperatures	AS1 6.14
Safety device	6.4
Sanitary appliances	3.0.1, Table 1
Sanitary fixtures AS1 6.12.1, 6.14.2, Figure 20, Ta safe water temperatures AS1 6	
Solar water heaters Installation Pipe installation Pipe insulation Weathertightness Wetback water heaters Location Solar orientation and inclination AS2 Maintenance and durability Durability Materials Material selection AS2 Protection from frosts Protection from Legionella bacteria Sizing of systems Solar controller Solar water heaters and components Scope Exclusions Structural support limitations	

66

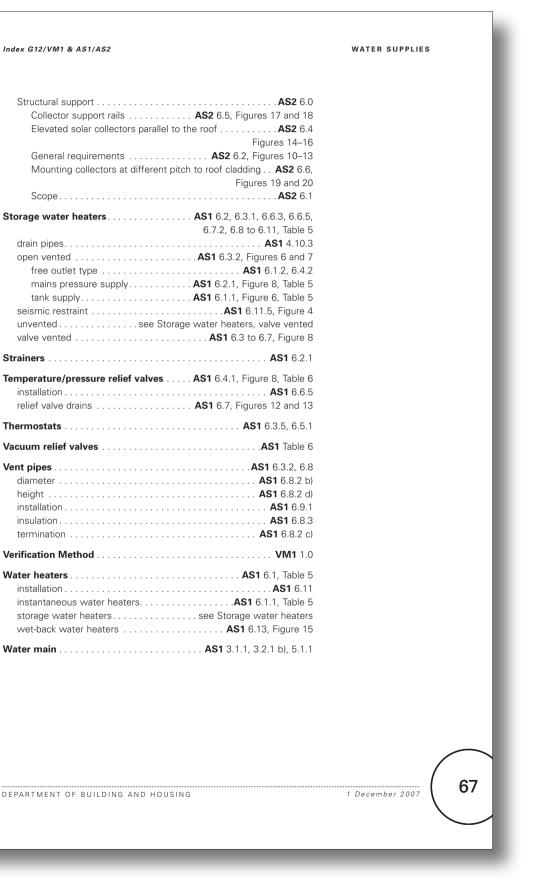
DEPARTMENT OF BUILDING AND HOUSING

WATER SUPPLIES	Index G12/VM1 & AS1/AS2
Potable water supply	AS1 3.0, 4.0
Pressure limiting valves	.3, 6.2.1, Figure 8, Table 6
Pressure reducing valves AS1 5.3.2, 6.2.1	1, Figures 7 and 9, Table 6
Pressure relief valves installation relief valve drains A	AS1 6.6.5
	ld water expansion valves, nperature relief valves and ıture/pressure relief valves
Safe trays	AS1 5.2.3, 6.11.3
Safe water temperatures	
Safety device	6.4
Sanitary appliances	
Sanitary fixtures AS1 6.12.1, 6.14.2, safe water temperatures	, Figure 20, Tables 1 and 3
Solar water heaters Installation Pipe installation Pipe insulation Weathertightness Vetback water heaters Location Solar orientation and inclination Maintenance and durability Durability Maintenance Materials Material selection Requirements Operating and safety devices Protection from frosts Protection from Legionella bacteria Sizing of systems Solar controller Solar water heaters and components Structural support limitations.	AS2 5.3 AS2 5.4 2 5.2, Table 4, Figures 2–9 AS2 4.0, 4.1 AS2 4.2, Figure 2 AS2 7.0 AS2 7.1 AS2 7.1 AS2 2.0 AS2 3.0 AS2 3.4 AS2 3.4 AS2 3.1 AS2 3.1

1 December 2007

Proposed G12 Water Supplies - No changes proposed to this page

Index G12/VM1 & AS1/AS2


Structural support AS2 6.0 Collector support rails AS2 6.5, Figures 17 and 18 Elevated solar collectors parallel to the roof AS2 6.4 Figures 14–16 General requirements General requirements AS2 6.2, Figures 10–13 Mounting collectors at different pitch to roof cladding AS2 6.6, Figures 19 and 20 Scope Storage water heaters AS1 6.2, 6.3.1, 6.6.3, 6.6.5, 6.7.2, 6.8 to 6.11, Table 5 drain pipes open vented AS1 6.3.2, Figures 6 and 7	
Elevated solar collectors parallel to the roof AS2 6.4 Figures 14–16 General requirements AS2 6.2, Figures 10–13 Mounting collectors at different pitch to roof cladding AS2 6.6, Figures 19 and 20 Scope AS2 6.1 Storage water heaters AS1 6.2, 6.3.1, 6.6.3, 6.6.5, 6.7.2, 6.8 to 6.11, Table 5 drain pipes AS1 4.10.3	
General requirements AS2 6.2, Figures 10–13 Mounting collectors at different pitch to roof cladding AS2 6.6, Figures 19 and 20 Scope AS2 6.1 Storage water heaters AS1 6.2, 6.3.1, 6.6.3, 6.6.5, 6.7.2, 6.8 to 6.11, Table 5 drain pipes AS1 4.10.3	
Scope AS2 6.1 Storage water heaters AS1 6.2, 6.3.1, 6.6.3, 6.6.5, 6.7.2, 6.8 to 6.11, Table 5 drain pipes	
6.7.2, 6.8 to 6.11, Table 5 drain pipes AS1 4.10.3	
free outlet type AS1 6.1.2, 6.4.2	
mains pressure supply AS1 6.2.1, Figure 8, Table 5	
tank supply	
seismic restraint	
unvented see Storage water heaters, valve vented	
valve vented	
Strainers AS1 6.2.1	
Temperature/pressure relief valves AS1 6.4.1, Figure 8, Table 6	
installation	
relief valve drains	
Thermostats	
Vacuum relief valvesAS1 Table 6	
Vent pipes	
diameter	
height AS1 6.8.2 d)	
installation	
insulation	
termination AS1 6.8.2 c)	
Verification Method VM1 1.0	
Water heaters AS1 6.1, Table 5	
installation	
instantaneous water heaters	
storage water heaters see Storage water heaters	
wet-back water heaters AS1 6.13, Figure 15	
Water main	

DEPARTMENT OF BUILDING AND HOUSING

1 December 2007

67

DEPARTMENT OF BUILDING AND HOUSING

Proposed G12 Water Supplies - No changes proposed to this page

	WATER SUPPLIES	Index G12/VM1 & AS1/AS2
	Water supply systems	
	anchor points AS	51 7.1.2
	electrochemical compatibility AS	S1 7.1.1
	in concrete or masonry AS	61 7.3.3
	pipe supports	AS1 7.1
	spacing	Table 7
	pipes below ground	51 7.3.2
	protection from damage	AS1 7.3
	protection from freezing	AS1 7.2
	protection from frosts AS	S1 3.6.3
	maintenance facilities	AS1 5.2
	materials	
	pressure limitations AS1	
	temperature limitations AS1	
	pipe size	
	flow rates	
	watertightness	AS1 7.5
	Water tanksAS1 5.	2, 6.2.1
	access	Figure 4
	covers	51 5.2.4
	location AS	51 5.2.1
	overflow pipes	Figure 4
	safe traysAS1 5.2.3, F	Figure 4
	seismic restraint	-
	structural support AS1 5.2.7, F	•
	water storage tanks	AS1 5.1
\frown		
68		
00	1 December 2007 DEPARTM	MENT OF BUILDING AND HOUSING
\checkmark		

V	Vater supply systems	AS1 5.2 AS1 7.1.2 AS1 7.1.1 AS1 7.1.1 AS1 7.3.3 AS1 7.1.3, Table 7 AS1 7.1.3, Table 7 AS1 7.3.2 AS1 7.3.2 AS1 7.3.2 AS1 7.3 AS1 3.6.3 AS1 3.6.3 AS1 2.0, Table 1 AS1 2.2.2 a) AS1 2.2.2 a) AS1 5.3, Table 4
v	watertightness	AS1 7.5
·	access	AS1 5.2.5, Figure 4 AS1 5.2.4 AS1 5.2.1 AS1 5.2.2, Figure 4 AS1 5.2.3, Figure 4 AS1 5.2.7, Figure 4 AS1 5.2.7, Figure 4
68	1 December 2007	DEPARTMENT OF

WATER SUPPLIES

Index G12/VM1 & AS1/AS2

OF BUILDING AND HOUSING

Appendix C. Proposed changes to the acceptable solutions and verification methods for clause G13 Foul Water

As part of Proposals 4, 6, and 7, here are proposed changes to the acceptable solutions and verification methods for clause G13 Foul Water. The list below identifies the portions of the documents that are proposed to be amended as part of each proposal. The proposed changes are also presented as part of the full document with the new or amended text shown in blue.

Proposal 4. AS/NZS 3500 Plumbing and drainage standards

› Acceptable Solution G13/AS3

- Cite the new AS/NZS 3500.2: 2021 Plumbing and drainage Sanitary plumbing and drainage Amendment 1
- Remove the modifications to AS/NZS 3500.2 previously found in G13/AS3 for Clauses 4.9.1, 5.6,
 6.6.2.4, and 6.6.2.6. These modifications are no longer necessary for the proposed citation of AS/NZS 3500.2: 2021
- Update the modification to AS/NZS 3500.2 Clause 2.2 to reference the G13/AS2 provisions for foul water drainage systems materials and products

Proposal 6. Plumbing and drainage system material standards

- Cite new plumbing and drainage system material standards in Acceptable Solutions G13/AS1 & G13/AS2
 - AS/NZS 2280: 2020 Ductile iron pipes and fittings Amendment 1
 - AS/NZS 3879: 2011 Solvent cements and priming fluids for PVC (PVC-U and PVC-M) and ABS and ASA pipes and fittings
 - AS/NZS 4130: 2018 Polyethylene (PE) pipe for pressure applications Amendment 1
 - AS/NZS 7671: 2010 Plastics piping systems for soil and waste discharge (low and high temperature) inside buildings - Polypropylene (PP)
 - AS 1432: 2004 Copper tubes for plumbing, gasfitting and drainage applications
 - AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints Sewer quality
 - AS 3571: 2009 Plastic piping systems Glass reinforced thermoplastics (GRP) systems based on unsaturated polyester (UP) resin – pressure and non-pressure drainage and sewerage (ISO 10467: 2004 MOD) Amendment 1
 - AS 4809: 2017 Copper pipe and fittings Installation and commissioning
 - BS EN 295.1: 2013 Vitrified clay pipe systems for drains and sewers Requirements for pipes, fittings and joints
 - BS EN 1124: Pipes and fittings of longitudinally welded stainless steel pipes with spigot and socket for waste water systems
 - Part 1: 1999 Requirements, testing, quality control
 - Part 2: 2014 System S, forms and dimensions

> Other changes as part of this proposal

- G13/AS1 Paragraph 2.1.2 and G13/AS2 Paragraph 2.0.2 Provide informative comments to explain that WaterMarked products may be deemed to satisfy the relevant performances of clause G13
- G13/AS1 Table 1 and G13/AS2 Table 1 Amend the list of materials for sanitary plumbing and drainage pipes to include additional materials and cite installation and manufacturing standards

Proposal 7. Resolving conflicts and editorial changes

- > G13/AS1 Paragraph 4.6.3 and G13/AS2 Paragraph 3.5.2 and Figure 1 Provide new requirements for the installation of junctions in graded pipes and drains to align with AS/NZS 3500.2: 2021
- G13/AS2 Paragraph 3.3.1 (ii) and Figure 2 Change the gully trap height above unpaved ground level from 100 mm to 75 mm for consistency with equivalent requirements under G13/AS3 (AS/NZS 3500.2: 2021)
- G13/AS2 Paragraph 3.5.2 Provide a new comment to help clarify the requirement for drains to be installed at the maximum practicable gradie

Proposed G13 Foul Water - No changes proposed to this page

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause **G13 Foul Water**

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause **G13 Foul Water**

Current G13 Foul Water acceptable solutions and verification methods

(Text to be amended shown in red)

Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.

Enquiries about the content of this document should be directed to:

Ministry of Business, Innovation and Employment PO Box 1473, Wellington Telephone 0800 242 243 Email: info@building.govt.nz

Verification Methods and Acceptable Solutions are available from www.building.govt.nz

New Zealand Government

© Ministry of Business, Innovation and Employment 2020 This document is protected by Crown copyright, unless indicated otherwise. The Ministry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the purposes of your business provided you reproduce the document accurately and not in an inappropriate or misleading context. You may not distribute this document to others

or reproduce it for sale or profit.

The Ministry of Business, Innovation and Employment owns or has licences to use all In the marks of backs, includes and constraint of the produce images and trademarks in this document. You must not use or reproduce images and trademarks featured in this document for any purpose (except as part of an accurate reproduction of this document) unless you first obtain the written permission of the Ministry of Business, Innovation and Employment.

2

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.

Enquiries about the content of this document should be directed to:

Ministry of Business, Innovation and Employment PO Box 1473, Wellingto Telephone 0800 242 243 Email: info@building.govt.nz

Verification Methods and Acceptable Solutions are available from www.building.govt.nz

New Zealand Government

© Ministry of Business, Innovation and Employment 2022 Winitsty of business, innovation and employment 2022 This document is protected by Crown copyright, unless indicated otherwise. The Ministry of Business, Innovation and Employment administers the copyright in this document. You may use and reproduce this document for your personal use or for the purposes of your business provided you reproduce the document accurately and not in an inappropriate or misleading context. You may not distribute this document to others or reproduce it for sale or profit.

The Ministry of Business, Innovation and Employment owns or has licences to use all images and trademarks in this document. You must not use or reproduce images and regroduction of this document for any purpose (except as part of an accur reproduction of this document) unless you first obtain the written permission of the mission of the Ministry of Business, Innovation and Employment,

2

Proposed G13 Foul Water - No changes proposed to this page

Document Status

The most recent version of this document (Amendment 9), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 5 November 2020 and supersedes all previous versions of this document.

The previous version of this document (Amendment 8) will cease to have effect on 3 November 2021.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

G13: Document History			
	Date	Alterations	
First published	July 1992		
Amendment 1	September 1993	pp. vii–viii, References p. xi, Definitions	p.25, Figure 3 p. 31, Figure 7
Reprinted incorporating	Amendment 1	October 1994	
Amendment 2	1 December 1995	p. viii, References	
Amendment 3	28 February 1998	p. ii, Document History p. viii, References	p. 1, 1.0.1 p. 21, 1.0.1
Second edition	Effective from 1 October 2001	Document revised – second edition issued	i
Amendment 1	Published March 2007 Effective from 23 June 2007	p. 2, Document History, Status p. 6, Contents pp. 7–8, References	pp. 9–10, Definitions p. 52A, AS3 1.0, 1.0.1, 1.0.2 p. 55, Index
Erratum 1	Effective from 23 June 2007	pp. 5–6, Contents pp. 33–34, AS1 8.0, 8.1	pp. 50–51, AS2 7.0, 7.1
Amendment 2	Effective from 21 June 2007	p. 2, Document History, Status pp. 3, 4, 4A, Building Code Clause p. 6, Contents	p. 8, References p. 52A, VM4 p. 54, Index
Amendment 3	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 7–8, References p. 11, G13/VM1 1.0.1 p. 33, G13/AS1 Table 1 p. 32, G13/AS1 6.1.1 p. 33, G13/AS1 6.2.2, 6.3.1, 6.3.2, 7.1.2, Table 7	p. 37, G13/AS2 Table 1 p. 42, G13/AS2 5.1.2 p. 50, G13/AS2 6.1.2 p. 51, G13/AS3 1.0.1 pp. 54–55, Index
Amendment 4	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status p. 8, References	p. 10, Definitions p. 37, G13/AS2 Table 1
Amendment 5	14 February 2014 until 30 May 2017	p. 2A, Document History, Status pp. 7–8, References p. 9, Definitions p. 35, G13/VM2 1.0.1	p. 44, G13/AS2 5.6.1 p. 51, G13/SA2 1.03 p. 52A, 1.1.2
Amendment 6	Effective 1 January 2017 until 31 March 2019	p. 8, References p. 31 G13/AS1 5.8.2, 5.8.3 p. 33 G13/AS1 6.4.1	p. 37 G13/AS2 Table 1 p. 51 G13/AS3 2.0.1, 2.0.2
Amendment 7	Effective from 30 November 2018 until 31 October 2019	p. 8 References p . 33 G13/AS1 7.1.3	p. 50 G13/AS2 6.1.3 p. 51 G13/AS3 2.0.1

2A

Document Status

The most recent version of this document (Amendment 9), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 5 November 2020 and supersedes all previous versions of this document.

The previous version of this document (Amendment 8) will cease to have effect on 3 November 2021.

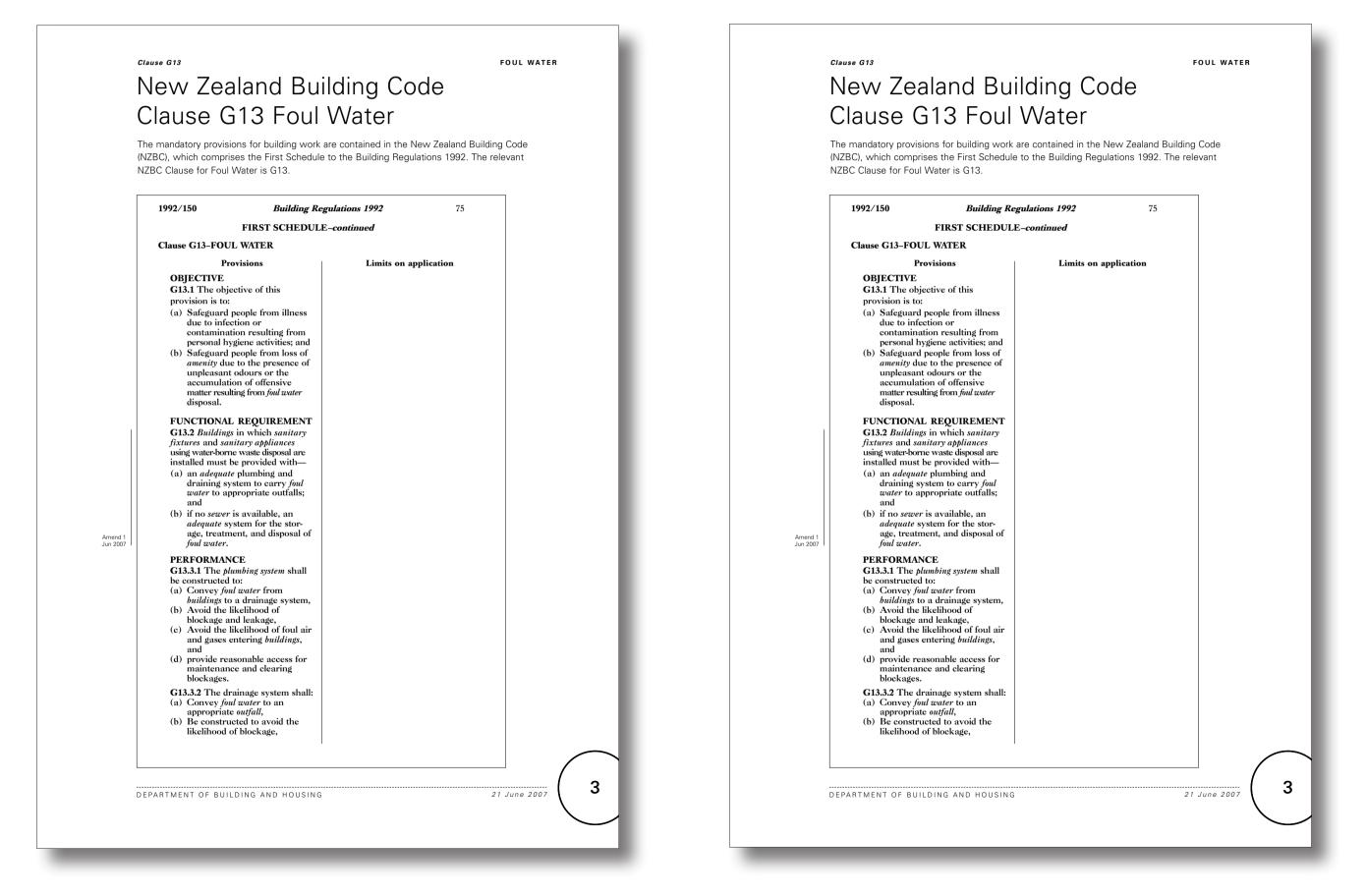
People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

	Date	Alterations	
First published	July 1992		
Amendment 1	September 1993	pp. vii–viii, References p. xi, Definitions	p.25, Figure 3 p. 31, Figure 7
Reprinted incorporating	Amendment 1	October 1994	
Amendment 2	1 December 1995	p. viii, References	
Amendment 3	28 February 1998	p. ii, Document History p. viii, References	p. 1, 1.0.1 p. 21, 1.0.1
Second edition	Effective from 1 October 2001	Document revised – second edition issued	1
Amendment 1	Published March 2007 Effective from 23 June 2007	p. 2, Document History, Status p. 6, Contents pp. 7–8, References	pp. 9–10, Definitions p. 52A, AS3 1.0, 1.0.1, 1.0.2 p. 55, Index
Erratum 1	Effective from 23 June 2007	pp. 5–6, Contents pp. 33–34, AS1 8.0, 8.1	pp. 50–51, AS2 7.0, 7.1
Amendment 2	Effective from 21 June 2007	p. 2, Document History, Status pp. 3, 4, 4A, Building Code Clause p. 6, Contents	p. 8, References p. 52A, VM4 p. 54, Index
Amendment 3	Published 30 June 2010 Effective from 30 September 2010	p. 2, Document History, Status pp. 7–8, References p. 11, G13/VM1 1.0.1 p. 13, G13/AS1 Table 1 p. 32, G13/AS1 6.1.1 p. 33, G13/AS1 6.2.2, 6.3.1, 6.3.2, 7.1.2, Table 7	p. 37, G13/AS2 Table 1 p. 42, G13/AS2 5.1.2 p. 50, G13/AS2 6.1.2 p. 51, G13/AS3 1.0.1 pp. 54–55, Index
Amendment 4	Effective from 10 October 2011 until 14 August 2014	p. 2, Document History, Status p. 8, References	p. 10, Definitions p. 37, G13/AS2 Table 1
Amendment 5	14 February 2014 until 30 May 2017	p. 2A, Document History, Status pp. 7–8, References p. 9, Definitions p. 35, G13/VM2 1.0.1	p. 44, G13/AS2 5.6.1 p. 51, G13/SA2 1.03 p. 52A, 1.1.2
Amendment 6	Effective 1 January 2017 until 31 March 2019	p. 8, References p. 31 G13/AS1 5.8.2, 5.8.3 p. 33 G13/AS1 6.4.1	p. 37 G13/AS2 Table 1 p. 51 G13/AS3 2.0.1, 2.0.2
Amendment 7	Effective from 30 November 2018 until 31 October 2019	p. 8 References p . 33 G13/AS1 7.1.3	p. 50 G13/AS2 6.1.3 p. 51 G13/AS3 2.0.1

2A

Current G13 Foul Water acceptable solutions and verification methods (Text to be amended shown in red)

	istory (continued)		
	Date	Alterations	
Amendment 7	Effective from 30 November 2018 until 31 October 2019	p. 8 References p . 33 G13/AS1 7.1.3	p. 50 G13/AS2 6.1.3 p. 51 G13/AS3 2.0.1
Amendment 8	Effective 27 June 2019 until 3 November 2021	p. 8 References	p 33 G13/AS1 6.4.1
Amendment 9	Effective 5 November 2020	p 6 Contents p. 8 References p. 10 Definitions p. 13 G13/AS1 Table 1 p. 31 G/13/AS1 5.8.2 p. 33 G13/AS1 6.2.2	p. 40 G13/AS2 3.3.1, 3.3.2, 3.4.2 p. 45 G13/AS2 Figure 7 p. 50 G13/AS2 6.1.2 pp. 51–52 G13 AS3 1.0 pp. 53–54 Index
Note: Page numbers	relate to the document at the time of Amen	dment and may not match page	e numbers in current document.

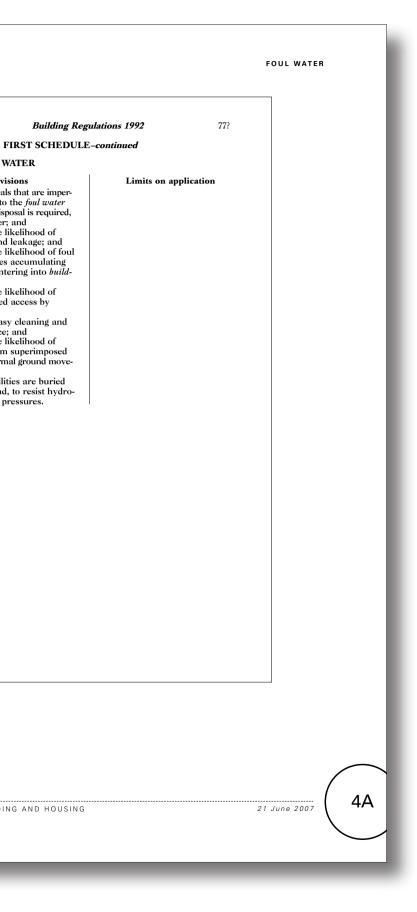

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

	Date	Alterations	
Amendment 7	Effective from 30 November 2018 until 31 October 2019	p. 8 References p . 33 G13/AS1 7.1.3	p. 50 G13/AS2 6.1.3 p. 51 G13/AS3 2.0.1
Amendment 8	Effective 27 June 2019 until 3 November 2021	p. 8 References	p 33 G13/AS1 6.4.1
Amendment 9	Effective 5 November 2020	p 6 Contents p. 8 References p. 10 Definitions p. 13 G13/AS1 Table 1 p. 31 G/13/AS1 5.8.2 p. 33 G13/AS1 6.2.2	p. 40 G13/AS2 3.3.1, 3.3.2, 3.4. p. 45 G13/AS2 Figure 7 p. 50 G13/AS2 6.1.2 pp. 51–52 G13 AS3 1.0 pp. 53-54 Index
Amendment 10	Effective xx November 2022		

Note: Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.

2B

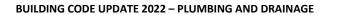
Proposed G13 Foul Water - No changes proposed to this page



Proposed G13 Foul Water - No changes proposed to this page

FOUL WATER	Clause G13		
		FOUL WATER	Clause G13
<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header></page-header>		<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header></page-header>	
4 21 June 2007 DEPARTMENT OF BUILDING AN	D HOUSING	4 21 June 2007 DEPARTMENT OF BUILDING	AND HOUSING

Proposed G13 Foul Water - No changes proposed to this page


	Clause G13	FOUL WATER	Clause G	13
Amend 1 Jun 2007	<page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header>		Cla	 2/150 DIVERSIMPLE SUPPORT SUP
	DEPARTMENT OF BUILDING AND HOUSING	1 June 2007	DEPARTN	MENT OF BUILDING AND HOUSING

Proposed G13 Foul Water - No changes proposed to this page

4B

Proposed G13 Foul Water - No changes proposed to this page

		Page			Page
Dofor	ences	7	6.0	Installation	32
Refer	ences	/	6.1	Jointing methods	32
Defin	itions	9	6.2	Pipe supports	33
Verifi	cation Method G13/VM1	11	6.3	Thermal movement	33
Sanit	ary Plumbing		6.4	Fire separation	33
1.0	Sanitary Plumbing	11	7.0	Watertightness	33
	ptable Solution G13/AS1 ary Plumbing	13	7.1	Test methods	33
1.0	Scope	13			
2.0	Materials	13			
2.1	Pipes, traps and fittings	13		ication Method G13/VM2 nage	35
3.0	Water Traps	13	1.0	Drainage	35
3.1	Water trap requirements	13	A = = =	•	37
3.2	Water trap dimensions	14		ptable Solution G13/AS2 nage	37
3.3	Water trap location	14	1.0	Scope	37
3.4	Floor outlets	15	2.0	Materials	37
4.0	Discharge Pipes	18	2.1	Fill materials	37
4.1	Layout	18	3.0	Design	37
4.2	Access for cleaning	18	3.1	Bends	37
4.3	Diameter	20	3.2	Junctions	37
4.4	Gradient	20	3.3	Gully traps	38
4.5	Fixture discharge pipes serving waste water fixtures	20	3.4	Grease traps	40
4.6	Fixture discharge pipes	20	3.5	Gradient of drains	40
	serving soil fixtures	20	3.6	Diameter of drains	42
4.7	Discharge stacks	24	4.0	Drain Ventilation	42
5.0	Venting	25	4.1	Ventilation requirements	42
5.1	Venting required	25	4.2	Diameter of drain vent pipe	42
5.2	Vent pipes	25	5.0	Installation	42
5.Z	Diameter of vent pipes	25	5.1	Jointing	42
	Cradient of yeart pipes	29	5.2	Construction	42
5.3	Gradient of vent pipes		5.3	Construction methods	42
5.3 5.4	Connection of vents to fixture discharge pipes	29	5.4	Trench width	44
5.3 5.4 5.5	Connection of vents to	29 31	5.4	Trench width	44
5.3	Connection of vents to fixture discharge pipes		5.4	Trench width	44

Contents	G13/VM1/VM2/VM4	&	AS1/AS2/AS3

Cont	ents G13/VM1/VM2/VM4 & AS1/AS2/A	S3		FC	UL WATER	
С	ontents					
		Page			Page	
Refe	rences	7	6.0	Installation	32	
			6.1	Jointing methods	32	
Defi	nitions	9	6.2	Pipe supports	33	
	ication Method G13/VM1	11	6.3	Thermal movement	33	
	tary Plumbing		6.4	Fire separation	33	
1.0	Sanitary Plumbing	11	7.0	Watertightness	33	
	ptable Solution G13/AS1 tary Plumbing	13	7.1	Test methods	33	
1.0	Scope	13				Erratum 1 Jun 2007
2.0	Materials	13	Vori	fication Method G13/VM2	35	
2.1	Pipes, traps and fittings	13		ncation Method G13/VM2	35	
3.0	Water Traps	13	1.0	o Drainage	35	
3.1	Water trap requirements	13		-	37	
3.2	Water trap dimensions	14		eptable Solution G13/AS2 nage	37	
3.3	Water trap location	14	1.0	Scope	37	
3.4	Floor outlets	15	2.0	Materials	37	
4.0	Discharge Pipes	18	2.1	Fill materials	37	
4.1	Layout	18	3.0	Design	37	
4.2	Access for cleaning	18	3.1	Bends	37	
4.3	Diameter	20	3.2	Junctions	37	
4.4	Gradient	20	3.3	Gully traps	38	
4.5	Fixture discharge pipes	20	3.4	Grease traps	40	
4.6	serving waste water fixtures	20	3.5	Gradient of drains	40	
4.0	Fixture discharge pipes serving soil fixtures	20	3.6	Diameter of drains	42	
4.7	Discharge stacks	24	4.0	Drain Ventilation	42	
5.0	Venting	25	4.1	Ventilation requirements	42	
5.1	Venting required	25	4.2	Diameter of drain vent pipe	42	
5.2	Vent pipes	25	5.0	Installation	42	
5.3	Diameter of vent pipes	25	5.1	Jointing	42	
5.4	Gradient of vent pipes	29	5.2	Construction	42	
5.5	Connection of vents to fixture discharge pipes	29	5.3 5.4	Construction methods Trench width	42 44	
5.6	Discharge stack and relief vents	31				
5.7	Termination of open vent pipes	31				
5.8	Air admittance valves	31				

DEPARTMENT OF BUILDING AND HOUSING

23 June 2007

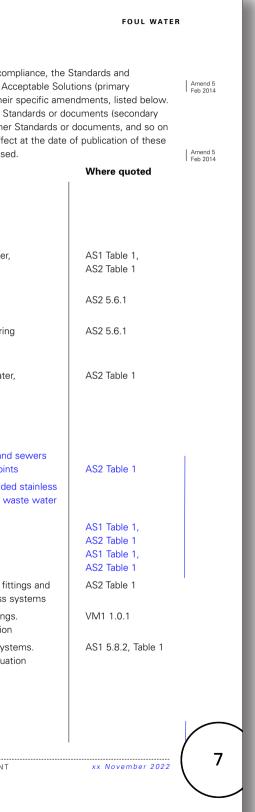
Proposed G13 Foul Water - No changes proposed to this page

	FOUL WATER	Contents G13/VM1/VM2/VM4 & AS1/AS2/AS3		FOUL WATER	Conte
Erratum 1 Jun 2007 Amends 1, 6, 9 Amend 2 Jun 2007	 5.5 Placing and compacting 5.6 Proximity of trench to building 5.7 Access points 5.8 Additional requirements for drains installed under buildings 5.9 Access to drains under buildings 5.0 Disused drains 6.0 Watertightness 6.1 Testing Acceptable Solution G13/AS3 Sanitary Plumbing and Drainage 1.0 AS/NZS 3500.2 Verification Method G13/VM4 On-Sitable Solution G13/AS4 1.1 Scope Index 	Page 44 44 49 90 50 50 51 52A 52 53	Erratum 1 Jun 2007 Armends 1, 6, 9 Armend 2 Jun 2007	 5.5 Placing and compacting 5.6 Proximity of trench to building 5.7 Access points 5.8 Additional requirements for drains installed under buildings 5.9 Access to drains under buildings 5.10 Disused drains 6.0 Watertightness 6.1 Testing Acceptable Solution G13/AS3 Sanitary Plumbing and Drainage 1.0 AS/NZS 3500.2 Verification Method G13/VM4 On-Site Disposal 1.1 Scope Index 	Page 44 44 44 49
6) 5 November 2020 N	AINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT	6		MINISTRY OF BUSINE

nts G13/VM1/VM2/VM4 & AS1/AS2/AS3

ESS, INNOVATION AND EMPLOYMENT

Current G13 Foul Water acceptable solutions and verification methods

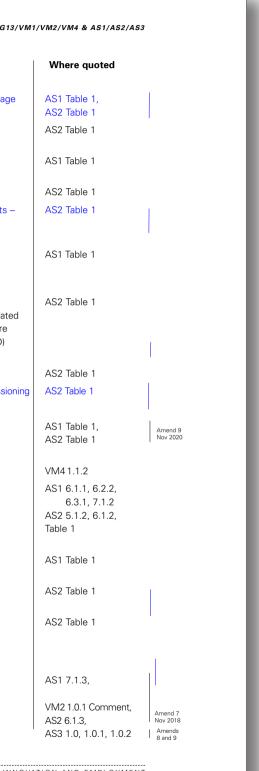

(Text to be amended shown in red)

	Refere	nces	FOUL WATE	1
Amend 4 Oct 2011	documents refere reference docume Where these prim reference docume (lower-order refere	of New Zealand Building Code (NZBC) compliance, the enced in these Verification Methods and Acceptable Solu- ents) must be the editions, along with their specific ame hary reference documents refer to other Standards or do ents), which in turn may also refer to other Standards or ence documents), then the version in effect at the date bods and Acceptable Solutions must be used.	utions (primary endments, listed below. ocuments (secondary documents, and so on of publication of these	Amend 8 Feb 201
	Standards New 2	Zealand	Where quoted	
Amend 3 Sep 2010				
	NZS 3501: 1976	Specification for copper tubes for water, gas, and sanitation <i>Amends: 1, 2, 3</i>	AS1 Table 1, AS2 Table 1	
Amend 5 Feb 2014	NZS 3604: 2011	Timber framed buildings	AS2 5.6.1	
Amend 5	NZS 4229: 2013	Concrete masonry buildings not requiring specific engineering design	AS2 5.6.1	
Feb 2014	NZS 4442: 1988	Welded steel pipes and fittings for water, sewage and medium pressure gas	AS2 Table 1	
Amend 3 Sep 2010	British Standard	s Institution		
	BS 437: 2008	Specification for cast iron drain pipes, fittings and their joints for socketed and socketless systems	AS2 Table 1	
Amend 3 Sep 2010	BS EN 12056:- Part 2: 2000	Gravity drainage systems inside buildings. Sanitary pipework, layout and calculation	VM1 1.0.1	
Amend 3	Standards Austra	alia		
Sep 2010	AS 1579: 2001	Arc welded steel pipes and fittings for water and waste water	AS2 Table 1	
	AS 1589: 2001	Copper and copper alloy waste fittings	AS1 Table 1	
Amend 3 Sep 2010	AS 1646: 2007	Elastomeric seals for waterworks purposes	AS2 Table 1	
Amend 3 Sep 2010	AS 2887: 1993	Plastic waste fittings	AS1 Table 1	
Amend 3 Sep 2010	AS 3571: 2009	Plastic piping systems – Glass reinforced thermoplastics (GRP) systems based on unsaturated	AS2 Table 1	
Amend 4 Oct 2011 Amend 3		polyester (UP) resin – pressure and non-pressure drainage and sewerage (ISO 10467: 2004 MOD)		
Sep 2010	AS 4139: 2003	Fibre reinforced concrete pipes and fittings	AS2 Table 1	(
	MINISTRY OF BUS	SINESS, INNOVATION AND EMPLOYMENT	14 February 2014	

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

	documents refere reference docume Where these prim reference docume	of New Zealand Building Code (NZBC) co nced in these Verification Methods and A ents) must be the editions, along with the ary reference documents refer to other S ents), which in turn may also refer to othe ence documents), then the version in effe
Amend 4 Oct 2011		ds and Acceptable Solutions must be use
	Standards New 2	Zealand
Amend 3 Sep 2010		
	NZS 3501: 1976	Specification for copper tubes for water gas, and sanitation <i>Amends: 1, 2, 3</i>
Amend 5 Feb 2014	NZS 3604: 2011	Timber framed buildings
Amend 5 Feb 2014	NZS 4229: 2013	Concrete masonry buildings not requiring specific engineering design
	NZS 4442: 1988	Welded steel pipes and fittings for wate sewage and medium pressure gas
Amend 3 Sep 2010		
	British Standard	s Institution
	BS EN 295:- Part 1: 2013	Vitrified clay pipe systems for drains an Requirements for pipes, fittings and join
	BS EN 1124:-	Pipes and fittings of longitudinally weld steel pipes with spigot and socket for v systems
	Part 1: 1999	Requirements, testing, quality control
	Part 2: 2014	System S, forms and dimensions
	BS 437: 2008	Specification for cast iron drain pipes, f their joints for socketed and socketless
Amend 3 Sep 2010	BS EN 12056:- Part 2: 2000	Gravity drainage systems inside building Sanitary pipework, layout and calculation
Amend 9 Nov 2020	BS EN 12380: 20	02 Air admittance valves for drainage sys Requirements, test methods and evalu- of conformity

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

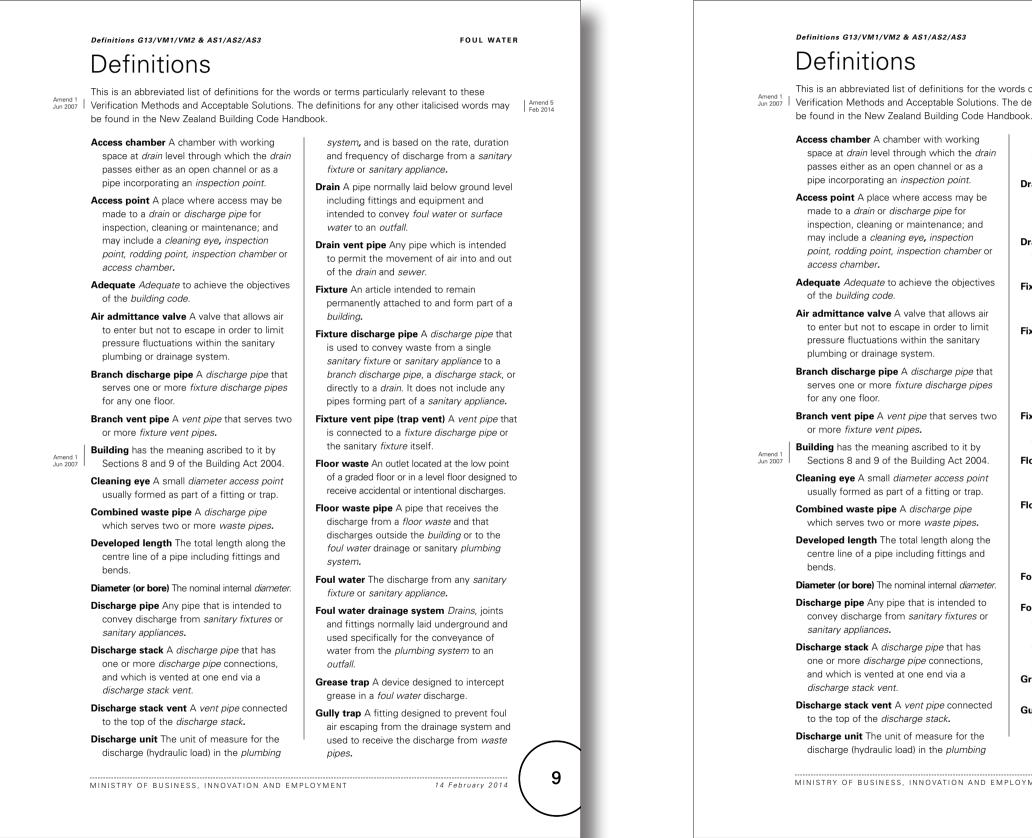


Current G13 Foul Water acceptable solutions and verification methods (Text to be amended shown in red)

			Where quoted	
	Australian/New	Zealand Standards		
Amends 3, 4, 9	AS/NZS 1260: 207	17 PVC-U pipes and fittings for drain, waste and	AS1 Table 1,	
Amends 5, 6, 9		vent applications	AS2 Table 1	
Amends 2 and 5	AS/NZS 1547: 201	12 On-site domestic wastewater management	VM41.1.2	
	AS/NZS 2032: 20	06 Installation of PVC pipe systems	AS1 6.1.1, 6.2.2,	
		Amend: 1	6.3.1, 7.1.2 AS2 5.1.2, 6.1.2,	
mend 3			Table 1	Amend 9
ep 2010				Nov 2020
end 4 2011	AS/NZS 2033: 20	08 Installation of polyethylene pipe systems Amend: 1, 2	AS1 Table 1	
mends 5, 6, 9	AS/NZS 2280: 201	14 Ductile iron pipes and fittings <i>Amend: 1</i>	AS2 Table 1	
mend 4 Oct 2011	AS/NZS 2566:-	Buried flexible pipelines	AS2 Table 1	
Amends 6 and 9	Part 2: 2002	Installation Amend: 1, 2, 3		
nend 1 1 2007	AS/NZS 3500:-	Plumbing and drainage		
Amends 5, 6, 7, 8	Part 2:2018	Sanitary plumbing and drainage	AS1 7.1.3,	
			VM2 1.0.1 Comment,	Amend 7
			AS2 6.1.3, AS3 1.0, 1.0.1, 1.0.2	Nov 2018 Amends
nends	AS/NZS 3518:201	3 Acrylonitrile butadiene styrene (ABS) compounds, pipes and fittings for pressure applications	AS2 Table 1	8 and 9
and 9		Amend: 1		Amend 1 Jun 2007
		07 Pre cast concrete pipes (pressure and non pressure)	AS2 Table 1	
end 9 2020		18 Polyethylene (PE) pipe for pressure applications	AS2 Table 1	
mend 3 ep 2010	AS/NZS 4401: 2006	High density polyethylene (PE-HD) pipes and fittings for soil and waste discharge (low and high temperature) systems inside buildings	AS1 Table 1	
mend 3 ep 2010	AS/NZS 4936: 20	02 Air Admittance valves for use in sanitary plumbing and drainage systems.	AS1 5.8.2, Table 1	Amend 6 Oct 2016
Amends	AS/NZS 5065: 20	05 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications	AS2 Table 1	
4 and 9		Amend: 1, 2		
mend 9	European Stand			
ov 2020		02 Air admittance valves for drainage systems. uirements, test methods and evaluation of conformity	AS1 5.8.2, Table 1	
		ty of Sanitary Engineers		
	ASSE 1050: 2009	Performance requirements for stack air admittance valves for sanitary drainage systems	AS1 5.8.2, Table 1	
		 Performance requirements for individual and branch e air admittance valves for sanitary drainage systems 	AS1 5.8.2, Table 1	

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

FOUL WATER	References G1
Standards Austra	alia
AS 1432: 2004	Copper tubes for plumbing, gasfitting and drainag applications
AS 1579: 2001	Arc welded steel pipes and fittings for water and waste water
AS 1589: 2001	Copper and copper alloy waste fittings
AS 1646: 2007	Elastomeric seals for waterworks purposes
AS 1741: 1991	Vitrified clay pipes and fittings with flexible joints Sewer quality
AS 2887: 1993	Plastic waste fittings
AS 3571: 2009	Plastic piping systems – Glass reinforced thermoplastics (GRP) systems based on unsaturate polyester (UP) resin – pressure and non-pressure
	drainage and sewerage (ISO 10467: 2004 MOD) Amend: 1
AS 4139: 2003	Fibre reinforced concrete pipes and fittings
AS 4809: 2017	Copper pipe and fittings – Installation and commission
Australian/New 2	Zealand Standards
AS/NZS 1260: 201	7 PVC-U pipes and fittings for drain, waste and vent applications
AS/N7S 1547 201	2 On-site domestic wastewater management
	06 Installation of PVC pipe systems Amend: 1
AS/NZS 2033: 200	08 Installation of polyethylene pipe systems Amend: 1, 2
AS/NZS 2280: 202	0 Ductile iron pipes and fittings Amend: 1
AS/NZS 2280: 202 AS/NZS 2566:- Part 2: 2002	
	AS 1432: 2004 AS 1579: 2001 AS 1589: 2001 AS 1646: 2007 AS 1741: 1991 AS 2887: 1993 AS 3571: 2009 AS 4139: 2003 AS 4809: 2017 Australian/New 2 AS/NZS 1260: 201 AS/NZS 1547: 201 AS/NZS 2032: 200


INNOVATION AND EMPLOYMENT

Current G13 Foul Water acceptable solutions and verification methods	Proposed am	endments to G13 Foul Water acceptable s	olutions and
(Text to be amended shown in red)	verification r	nethods (Proposed text in blue)	
		References G13/VM1/VM2/VM4 & AS1/AS2/AS3	FOUL WATER
	Amends	AS/NZS 3518:2013 Acrylonitrile butadiene styrene (ABS) compounds, pipes and fittings for pressure applications Amend: 1	Where quoted AS2 Table 1
	6 and 9	AS/NZS 4058: 2007 Pre cast concrete pipes (pressure and non pressure)	AS2 Table 1
	Amend 9 Nov 2020	AS/NZS 4130: 2018 Polyethylene (PE) pipe for pressure applications Amend: 1	AS2 Table 1
	Amend 3 Sep 2010	AS/NZS 4401: 2006 High density polyethylene (PE-HD) pipes and fittings for soil and waste discharge (low and high temperature) systems inside buildings	AS1 Table 1
		AS/NZS 4936: 2002 Air Admittance valves for use in sanitary plumbing and drainage systems.	AS1 5.8.2, Table 1 Amend 6 Oct 2016
	Amends 4 and 9	AS/NZS 5065: 2005 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications <i>Amend: 1, 2</i>	AS2 Table 1
		AS/NZS 7671: 2010 Plastics piping systems for soild and waste discharge (low and high temperature) inside buildings – Polypropylene (PP)	AS1 Table 1
		American Society of Sanitary Engineers	I
		ASSE 1050: 2009 Performance requirements for stack air admittance valves for sanitary drainage systems	AS1 5.8.2, Table 1
	Amend 9 Nov 2020	ASSE 1051: 2009 Performance requirements for individual and branch type air admittance valves for sanitary drainage systems	AS1 5.8.2, Table 1
		MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT	xx November 2022

Proposed G13 Foul Water - No changes proposed to this page

Proposed G13 Foul Water - No changes proposed to this page

space at drain level through which the drain passes either as an open channel or as a

Access point A place where access may be made to a drain or discharge nine for inspection, cleaning or maintenance; and may include a *cleaning eye*, inspection point, rodding point, inspection chamber or access chamber.

Adequate Adequate to achieve the objectives of the building code

Air admittance valve A valve that allows air to enter but not to escape in order to limit pressure fluctuations within the sanitary plumbing or drainage system

Branch discharge pipe A *discharge pipe* that serves one or more *fixture discharge pipes* for any one floor

Branch vent pipe A vent pipe that serves two or more fixture vent pipes.

Building has the meaning ascribed to it by Sections 8 and 9 of the Building Act 2004.

Cleaning eye A small diameter access point usually formed as part of a fitting or trap. **Combined waste pipe** A *discharge pipe*

which serves two or more waste pipes. Developed length The total length along the centre line of a pipe including fittings and

Foul water The discharge from any sanitary Diameter (or bore) The nominal internal diameter fixture or sanitary appliance.

convey discharge from *sanitary fixtures* or

Discharge stack A *discharge pipe* that has one or more *discharge pipe* connections. and which is vented at one end via a discharge stack vent.

Discharge stack vent A vent pipe connected to the top of the discharge stack.

Discharge unit The unit of measure for the discharge (hydraulic load) in the plumbing

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

FOUL WATER

This is an abbreviated list of definitions for the words or terms particularly relevant to these Amend 1 Jun 2007 Verification Methods and Acceptable Solutions. The definitions for any other italicised words may

system, and is based on the rate, duration and frequency of discharge from a *sanitary* fixture or sanitary appliance.

Drain A pipe normally laid below ground level including fittings and equipment and intended to convey foul water or surface water to an outfall

Drain vent pipe Any pipe which is intended to permit the movement of air into and out of the drain and sewer

Fixture An article intended to remain permanently attached to and form part of a buildina.

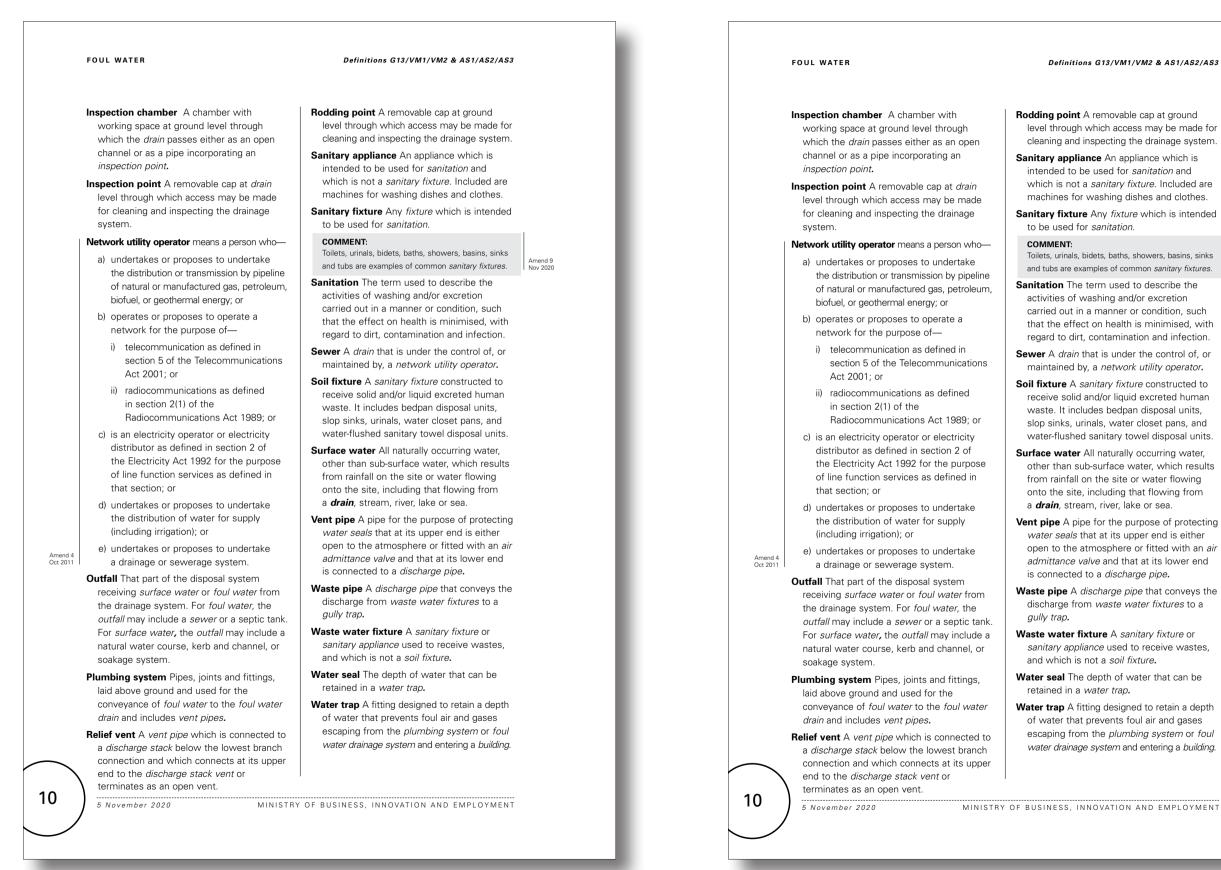
Fixture discharge pipe A discharge pipe that is used to convey waste from a single sanitary fixture or sanitary appliance to a branch discharge pipe, a discharge stack, or directly to a *drain*. It does not include any pipes forming part of a sanitary appliance.

Fixture vent pipe (trap vent) A vent pipe that is connected to a fixture discharge pipe or the sanitary fixture itself.

Floor waste An outlet located at the low point of a graded floor or in a level floor designed to receive accidental or intentional discharges

Floor waste pipe A pipe that receives the discharge from a *floor waste* and that discharges outside the *building* or to the foul water drainage or sanitary plumbing svstem.

Foul water drainage system Drains, joints and fittings normally laid underground and used specifically for the conveyance of water from the *plumbing system* to an outfall


Grease trap A device designed to intercept grease in a foul water discharge.

Gully trap A fitting designed to prevent foul air escaping from the drainage system and used to receive the discharge from waste pipes.

14 February 2014

9

Proposed G13 Foul Water - No changes proposed to this page

Definitions G13/VM1/VM2 & AS1/AS2/AS3

Rodding point A removable cap at ground level through which access may be made for cleaning and inspecting the drainage system.

intended to be used for *sanitation* and which is not a sanitary fixture. Included are machines for washing dishes and clothes.

Sanitary fixture Any fixture which is intended

Toilets, urinals, bidets, baths, showers, basins, sinks and tubs are examples of common sanitary fixtures.

Sanitation The term used to describe the activities of washing and/or excretion carried out in a manner or condition, such that the effect on health is minimised, with

Sewer A drain that is under the control of, or maintained by, a network utility operator.

Soil fixture A sanitary fixture constructed to receive solid and/or liquid excreted human waste. It includes bedpan disposal units, slop sinks, urinals, water closet pans, and water-flushed sanitary towel disposal units

Surface water All naturally occurring water, other than sub-surface water, which results from rainfall on the site or water flowing onto the site, including that flowing from a drain, stream, river, lake or sea.

Vent pipe A pipe for the purpose of protecting water seals that at its upper end is either open to the atmosphere or fitted with an air admittance valve and that at its lower end is connected to a discharge pipe.

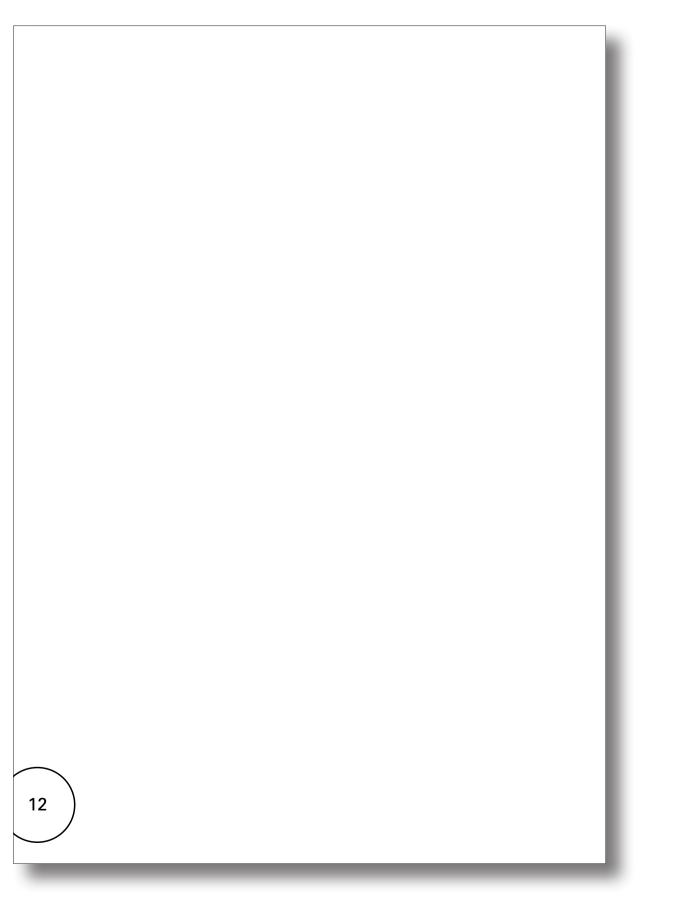
Waste pipe A discharge pipe that conveys the discharge from waste water fixtures to a

Waste water fixture A sanitary fixture or sanitary appliance used to receive wastes.

Water seal The depth of water that can be

Water trap A fitting designed to retain a depth of water that prevents foul air and gases escaping from the *plumbing system* or *foul* water drainage system and entering a building.

Nov 2020


Proposed G13 Foul Water - No changes proposed to this page

Verification Method G13/AS1 Verification Meth	sanitary plumbing	Verification Method G13/AS1 Verification Met
Sanitary Plumbin		Sanitary Plumbi
1.0 Sanitary Plumbing	9	, 1.0 Sanitary Plumbing
1.0.1 A design method for conveying <i>foul</i> <i>water</i> from <i>buildings</i> , and for avoiding the likelihood of foul air entering <i>buildings</i> , may verified as satisfying the relevant Performances of NZBC G13 if the method ^{Amend 3} Sep 2010 complies with BS EN 12056.2.	be	1.0.1 A design method for conveying for water from buildings, and for avoiding th likelihood of foul air entering buildings, r verified as satisfying the relevant Performances of NZBC G13 if the methor Sep 2010 complies with BS EN 12056.2.
DEPARTMENT OF BUILDING AND HOUSING		DEPARTMENT OF BUILDING AND HOUS

Proposed G13 Foul Water - No changes proposed to this page

12

Current G13 Foul Water acceptable solutions and verification methods

(Text to be amended shown in red)

Acceptable Solution G13/AS1

FOUL WATER SANITARY PLUMBING

Acceptable Solution G13/AS1 Sanitary Plumbing

1.0 Scope

1.0.1 This Acceptable Solution applies to above-ground non-pressure (gravity flow) sanitary plumbing for *buildings* having 3 levels or less and includes all pipework for *foul water* within, or on the *building*, including any basements.

- 1.0.2 The solution does not include:
- a) Specialised types of sanitary fixtures or sanitary appliances used within buildings such as hospitals, laboratories and factories, or
- b) The conveyance of industrial liquid wastes, chemical or toxic wastes and other wastes which cannot be discharged to a *sewer* without pretreatment.

1.0.3 Protection of water seals

Water seals shall be protected from pressure fluctuations within the sanitary pipework so as to prevent foul air and gases from entering the *building.* The method described in this Acceptable Solution for protecting *water seals* is based on a fully vented *plumbing system* and generally requires each *fixture discharge pipe* to be vented.

COMMENT:

Individually venting each *fixture discharge pipe* provides the greatest flexibility in the arrangement and lengths of *discharge pipes*.

2.0 Materials

2.1 Pipes, traps and fittings

2.1.1 Materials for sanitary *plumbing systems* using gravity flow shall comply with Table 1.

3.0 Water Traps

3.1 Water trap requirements

3.1.1 Discharge points from *sanitary fixtures* and *sanitary appliances* shall have a *water trap* to prevent foul air from the *plumbing system* entering the *building*.

- 3.1.2 Water traps shall be:
- a) Removable,
- b) Able to be dismantled, or

c) Fitted with a *cleaning eye*.

COMMENT: Removable panels are not required for access to bath traps.

	Material	Standard
	Pipes and fittings	
and 9	Air admittance valves	ASSE 1050 or ASSE 1051, BS EN 12380, AS/NZS 4936
	Copper pipe	NZS 3501
	Copper fittings	AS 1589
	PVC pipe and fittings	AS/NZS 1260
	Plastic fittings	AS 2887
end 3	PE pipe and fittings	AS/NZS 4401
2010 I	Elastomeric rings	AS/NZS 4130 or AS 1646
	Traps	
	Plastic	AS 2887
	Copper	AS 1589

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

5 November 2020

13

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G13/AS1

Acceptable Solution G13/AS1 Sanitary Plumbing

1.0 Scope

1.0.1 This Acceptable Solution applies to above-ground non-pressure (gravity flow) sanitary plumbing for *buildings* having 3 levels or less and includes all pipework for *foul water* within, or on the *building*, including any basements.

1.0.2 The solution does not include:

- a) Specialised types of sanitary *fixtures* or sanitary appliances used within *buildings* such as hospitals, laboratories and factories, or
- b) The conveyance of industrial liquid wastes, chemical or toxic wastes and other wastes which cannot be discharged to a *sewer* without pretreatment.

1.0.3 Protection of water seals

Water seals shall be protected from pressure fluctuations within the sanitary pipework so as to prevent foul air and gases from entering the *building*. The method described in this Acceptable Solution for protecting *water seals* is based on a fully vented *plumbing system* and generally requires each *fixture discharge pipe* to be vented.

COMMENT:

Individually venting each *fixture discharge pipe* provides the greatest flexibility in the arrangement and lengths of *discharge pipes*.

	Table 1:	Pipes, traps and fittings Paragraph 2.1.1	
	Material		Standard
Amends	Pipes and	fittings	
Amend 3 Sep 2010	Copper pip Copper fitt	tings and fittings ings id fittings ic rings ene	ASSE 1050 NZS 3501, / AS 1589 AS/NZS 126 AS 2887 AS/NZS 440 AS 1646 AS/NZS 767 BS EN 1124
	Traps Plastic Copper		AS 2887 AS 1589

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

FOUL WATER Sanitary plumbing

2.0 Materials

2.1 Pipes, traps and fittings

2.1.1 Materials for sanitary *plumbing systems* using gravity flow shall comply with Table 1.

COMMENT

Products for use in sanitary *plumbing systems* that have been certified and marked in accordance with the requirements of the Australian WaterMark Certification Scheme and listed on the WaterMark Product Database may be deemed to meet the requirements of Paragraph 2.1.1 for their intended purposes.

3.0 Water Traps

3.1 Water trap requirements3.1.1 Discharge points from *sanitary fixtures* and *sanitary appliances* shall have a *water trap*

to prevent foul air from the *plumbing system* entering the *building*.

3.1.2 Water traps shall be:

a) Removable,

b) Able to be dismantled, or

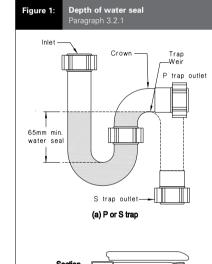
c) Fitted with a cleaning eye.

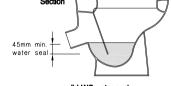
COMMENT:

Removable panels are not required for access to bath traps.

d	
50 or ASSE 1051, BS EN 12380, AS/NZS 4936 1, AS 1432	
1260	
4401	
7671 124 Parts 1 and 2	
	l –
	(13
IT xx November 2022	
	\searrow

Proposed G13 Foul Water - No changes proposed to this page


FOUL WATER Sanitary plumbing


3.2 Water trap dimensions

3.2.1 Under normal operating conditions, fixture traps shall retain a water seal depth of not less than 25 mm (see Figure 1).

COMMENT:

- 1. The nominal depth of *water seal* is 75 ± 10 mm for waste water fixture traps.
- 2. The nominal depth of *water seal* is 50 ± 5 mm for *soil* fixture traps.
- 3. The system should be tested under load conditions to ensure that a 25 mm minimum water seal depth is not compromised.

(b) WC water seal

3.2.2 The diameter of the water trap shall be

Acceptable Solution G13/AS1

not less than that given in Table 2.

3.3 Water trap location

3.3.1 A water trap shall:

- a) Be located as close as possible to the sanitary fixture or sanitary appliance it serves.
- b) Have a *discharge pipe* with a *developed* length not exceeding 1.2 m measured between the water seal and either the sanitary fixture outlet or the sanitary appliance discharge point, and
- c) Not be located in a different room to the sanitary fixture or sanitary appliance it serves.

COMMENT

- 1. Waste material may build up on the walls of discharge pipes and may cause offensive odours to enter the building through the fixture outlet. A short discharge pipe reduces the likelihood of this happening.
- 2. Traps may be located under the floor or in ceiling spaces of the floor below.

3.3.2 Multiple outlets

A single water trap may serve any one of the following outlet combinations located within the same space (see Figure 2):

- a) One or two adjacent domestic kitchen sinks together with a dishwashing machine.
- b) One or two adjacent domestic kitchen sinks together with a waste disposal unit.
- c) One or two adjacent laundry tubs together with a clothes washing machine.
- d) Two adjacent basins, domestic kitchen sinks or laundry tubs.
- e) One or two adjacent domestic kitchen sinks, together with a waste disposal unit and a dishwashing machine when fitted with a 50 mm trap and *discharge pipe*.

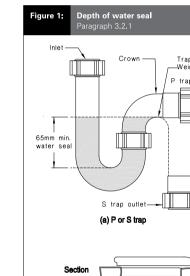
COMMENT:

Commercial sinks - one water trap is not permitted to serve two adjacent commercial sinks, as a sink containing foul water may contaminate an adjacent sink being used for food preparation

14

1 October 2001

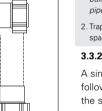
DEPARTMENT OF BUILDING AND HOUSING

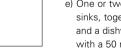

FOUL WATER SANITARY PLUMBING

3.2 Water trap dimensions

3.2.1 Under normal operating conditions, fixture traps shall retain a water seal depth of not less than 25 mm (see Figure 1).

COMMENT:

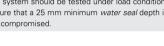

- 1. The nominal depth of *water seal* is 75 ± 10 mm for waste water fixture traps.
- 2. The nominal depth of *water seal* is 50 ± 5 mm for *soil* fixture traps.
- 3. The system should be tested under load conditions to ensure that a 25 mm minimum water seal depth is not compromised.



45mm

14

water sea



COMMENT being used for food preparation.

1 October 2001

(b) WC water seal

Acceptable Solution G13/AS1

3.2.2 The *diameter* of the *water trap* shall be not less than that given in Table 2.

3.3 Water trap location

3.3.1 A water trap shall:

serves.

serves. COMMENT:

a) Be located as close as possible to the sanitary fixture or sanitary appliance it

b) Have a *discharge pipe* with a *developed* length not exceeding 1.2 m measured between the water seal and either the sanitary fixture outlet or the sanitary appliance discharge point, and

c) Not be located in a different room to the sanitary fixture or sanitary appliance it

1. Waste material may build up on the walls of discharge pipes and may cause offensive odours to enter the building through the fixture outlet. A short discharge pipe reduces the likelihood of this happening.

2. Traps may be located under the floor or in ceiling

A single water trap may serve any one of the following outlet combinations located within the same space (see Figure 2):

a) One or two adjacent domestic kitchen sinks together with a dishwashing machine

b) One or two adjacent domestic kitchen sinks together with a waste disposal unit.

c) One or two adjacent laundry tubs together with a clothes washing machine.

d) Two adjacent basins, domestic kitchen sinks or laundry tubs.

e) One or two adjacent domestic kitchen sinks, together with a waste disposal unit and a dishwashing machine when fitted with a 50 mm trap and *discharge pipe*.

Commercial sinks - one water trap is not permitted to serve two adjacent commercial sinks, as a sink containing foul water may contaminate an adjacent sink

Proposed G13 Foul Water - No changes proposed to this page

Acceptable Solution G13/AS1

Acceptable Solution G13/AS1		FOUL WATER Sanitary Plumbing
Table 2: Fixture discharge pipe siz Paragraphs 3.2.2, 4.3.1, 4.3		
Sanitary fixture or appliance	Discharge units	Minimum trap and discharge pipe diameter (mm)
Basin	1	32
Bath (with or without overhead shower) 4	40
Bathroom group (water closet pan, bath and shower, basin, and bidet in one compartment)	6	(Note 1)
Bidet	1	32
Cleaner's sink	1	40
Clothes washing machine (domestic)	5	40
Dishwashing machine (domestic)	3	40
Drinking fountain	1	25
Kitchen sink (commercial)	3	50
Kitchen sink (domestic, single or double, with or without waste disposal unit)	3	40
Laundry (single or double tub, with or without a clothes washing machine)	5	40
Shower	2	40
Urinal (1 or 2 stall)	1 per 600 mm length	50
Urinal (bowl type)	1	32
Urinal (3 or more stalls)	1 per 600 mm length	80
Water closet pan	4	80
3.4 Floor outlets		ed, charged to maintain the water
3.4.1 <i>Floor waste</i> outlets shall hav removable grating that is flush with	th the floor. <i>plumbin</i>	discharge to the <i>foul water</i> g system in accordance with ohs 4.5 and 5.0, or
COMMENT:		
1. The grating is to permit safe and easy people using the space containing the	movement of	y purpose is to discharge accidental /s:
2. Floor wastes in this section are not int receive liquid or excreted human wast		no <i>water trap,</i> arge to the open air within the
3.4.2 The <i>floor waste</i> , and the <i>wa</i>		erty boundary,
if used, shall have a minimum dia	meter of iii) disch	arge to a safe location, and
	iv) be fit	ted with a means to prevent the of birds and vermin.
40 mm. 3.4.3 A <i>floor waste</i> shall:		
40 mm.	entry above the	
 40 mm. 3.4.3 A <i>floor waste</i> shall: a) Be trapped, discharge 50 mm a grating of a <i>gully trap</i> and be very shared of a <i>gully trap</i>. 	entry above the	1.0stabar 2001

Basin		
Baoin		1
Bath (with	or without overhead shower)	4
	group (water closet pan, nower, basin, and bidet in rtment)	6
Bidet		1
Cleaner's s	ink	1
Clothes wa	shing machine (domestic)	5
Dishwashir	ng machine (domestic)	3
Drinking fo	untain	1
Kitchen sin	k (commercial)	3
	k (domestic, single or h or without waste it)	3
	ngle or double tub, hout a clothes achine)	5
Shower		2
Urinal (1 or	2 stall)	1 per 600 mm
Urinal (bow	(type)	1
Urinal (3 or	more stalls)	1 per 600 mm
Water close	et pan	4
-	ps of <i>fixtures</i> , traps are sized for th agraph 4.3.2.	e individual fixtures

COMMENT

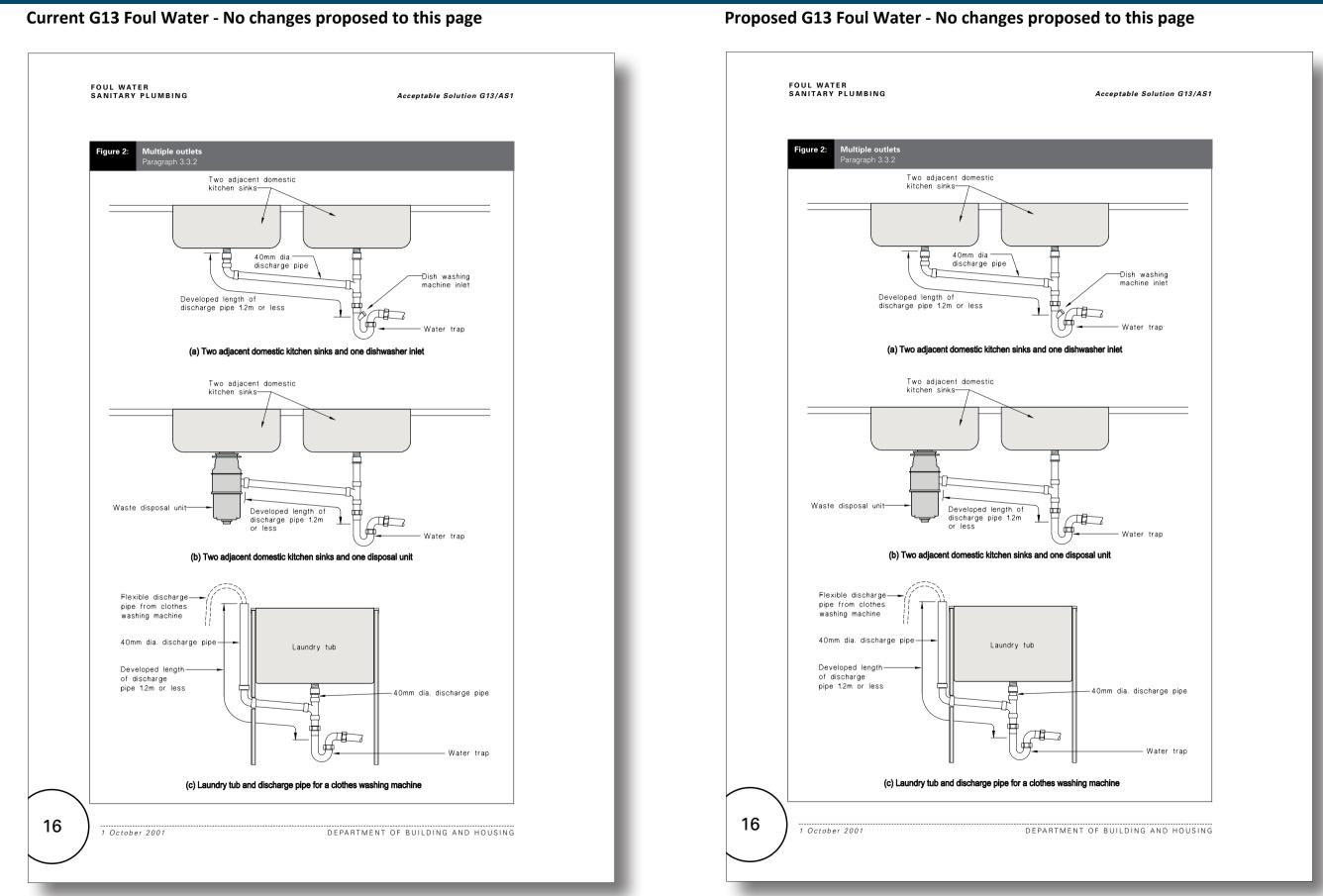
COMMENT:	
1. The grating is to permit safe and easy movement of	
people using the space containing the floor outlet.	

2. Floor wastes in this section are not intended to receive liquid or excreted human wastes.

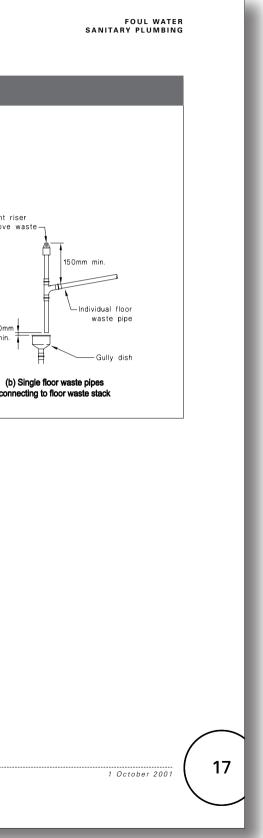
3.4.2 The floor waste, and the water trap if used, shall have a minimum diameter of 40 mm.

3.4.3 A floor waste shall:

a) Be trapped, discharge 50 mm above the grating of a gully trap and be vented as shown in Figure 3,


DEPARTMENT OF BUILDING AND HOUSING

FOUL WATER SANITARY PLUMBING Minimum trap and discharge pipe diameter (mm) 32 40 (Note 1) 32 40 40 40 25 50 40 40 40 ith 50 32 jth 80 80 charge pipes for groups are sized in accordance


- Be trapped, charged to maintain the *water* seal and discharge to the foul water *plumbing system* in accordance with Paragraphs 4.5 and 5.0, or
- c) If its only purpose is to discharge accidental
- overflows:
- i) have no water trap,
- ii) discharge to the open air within the property boundary,
- iii) discharge to a safe location, and
- iv) be fitted with a means to prevent the entry of birds and vermin.

1 October 2001

15

Current G13 Foul Water - No changes proposed to this page Proposed G13 Foul Water - No changes proposed to this page FOUL WATER SANITARY PLUMBING Acceptable Solution G13/AS1 Acceptable Solution G13/AS1 Floor waste stacks and pipes Paragraphs 3.4.3 and 3.4.4 igure 3: Floor waste stacks and pipes Paragraphs 3.4.3 and 3.4.4 iaure 3 Vent riser from stack —shall terminate in Vent riser from stack -shall terminate in accordance with accordance with Paragraph 5.7.4 Paragraph 5.7.4 -3 -Floor waste -Floor waste stack stack Vent riser Vent riser above wasteabove waste-____ -Individual floor waste -Individual floor waste pipes connecting to a floor waste stack must pipes connecting to a floor waste stack must discharge 50mm above a gully dish discharge 50mm above a gully dish ~ -3 Individual floor waste pipe 50mm 50mm 50mm 50mm min. min. min. min. Gullv dish -Gully dish -Gully dish (a) Multiple floor waste pipes (b) Single floor waste pipes (b) Single floor waste pipes connecting to floor waste stack (a) Multiple floor waste pipes connecting to floor waste stack connecting to floor waste stack connecting to floor waste stack 17 DEPARTMENT OF BUILDING AND HOUSING DEPARTMENT OF BUILDING AND HOUSING 1 October 2001

Proposed G13 Foul Water - No changes proposed to this page

FOUL WATER Sanitary plumbing		Acceptable Solution G13
Table 3: Diameters for floor	waste discharge pipes	_
Paragraph 3.4.4 Number of floor wastes	Diameter of waste outlet	Discharge stack siz
	Diameter of waste outlet (mm)	Discharge stack siz (mm)
		•
Number of floor wastes	(mm)	(mm)
Number of floor wastes	(mm) 40	(mm) 40

3.4.4 *Floor waste pipes* may be combined to form a *floor waste* stack and shall have a *diameter* not less than that given in Table 3 (see Figure 3).

Individual floor waste pipes connected to a floor waste stack need not be vented (see Figure 3).

- **3.4.5** Floor waste discharge stacks shall:
- a) Be open vented,
- b) Be vented independently from any other sanitary *plumbing system*, and
- c) Comply with the termination requirements of Paragraph 5.7.4.

COMMENT:

Independent venting reduces the risk of foul air and gases entering the floor waste system.

3.4.6 Charging floor wastes

The water seal of a trapped floor waste discharging directly to the foul water plumbing system shall be maintained by (see Figure 4):

- a) A charge pipe of not less than 32 mm *diameter* from a tap or a *drain* from a hot or cold water relief valve, which shall drain over a tundish so that the air gap is maintained.
- b) A mechanical trap priming device and discharge pipe,
- c) A tap for floor washing, located in the same room and in close proximity to the floor waste.

In all cases the charge pipe shall have a maximum length of 10 m.

All trap charging systems shall incorporate backflow prevention in accordance with G12/AS1

COMMENT

Backflow protection can be achieved by an appropriate air gap or backflow prevention device

4.0 Discharge Pipes

4.1 Lavout

4.1.1 Discharge pipes shall follow the most practicable route with the least number of bends

4.2 Access for cleaning

4.2.1 Access points shall be provided in discharge pipes to allow the easy clearance of blockages

4.2.2 Access points shall be provided at the following points

- a) At the junction of a soil *discharge pipe* with a discharge stack,
- b) Where a number of changes of direction occur,
- c) In a *discharge pipe* where access to junctions or changes of direction are restricted, and
- d) At the base of any soil stack at the point of connection to the drain.

COMMENT

Proprietary fittings that provide access into the pipe should be used at these points.

18

DEPARTMENT OF BUILDING AND HOUSING

FOUL WATER Sanitary plumbing

Table 3: Diameters for floor Paragraph 3.4.4	waste discharge pipes
Number of floor wastes	Diameter of waste outlet (mm)
1 – 3	40
4 - 6	40
1 – 3	50
4 - 6	50

3.4.4 *Floor waste pipes* may be combined to form a *floor waste* stack and shall have a *diameter* not less than that given in Table 3 (see Figure 3).

Individual floor waste pipes connected to a floor waste stack need not be vented (see Figure 3).

3.4.5 Floor waste discharge stacks shall:

- a) Be open vented,
- 4.1 Layout b) Be vented independently from any other sanitary *plumbing system*, and
- c) Comply with the termination requirements of Paragraph 5.7.4.

COMMENT

waste.

1 October 2001

Independent venting reduces the risk of foul air and gases entering the floor waste system.

3.4.6 Charging floor wastes

The water seal of a trapped floor waste discharging directly to the foul water plumbing system shall be maintained by (see Figure 4):

- a) A charge pipe of not less than 32 mm diameter from a tap or a drain from a hot or cold water relief valve, which shall drain over a tundish so that the air gap is maintained,
- b) A mechanical trap priming device and discharge pipe,
- c) A tap for floor washing, located in the same room and in close proximity to the floor

COMMENT:

In all cases the charge pipe shall have a maximum length of 10 m.

18

DEPARTMENT OF BUILDING AND HOUSING

1 October 2001

Acceptable Solution G13/AS1

Discharge stack size (mm)
40
50
50
80

All trap charging systems shall incorporate backflow prevention in accordance with

Backflow protection can be achieved by an appropriate air gap or backflow prevention device.

4.0 Discharge Pipes

G12/AS1.

COMMENT:

bends.

blockages

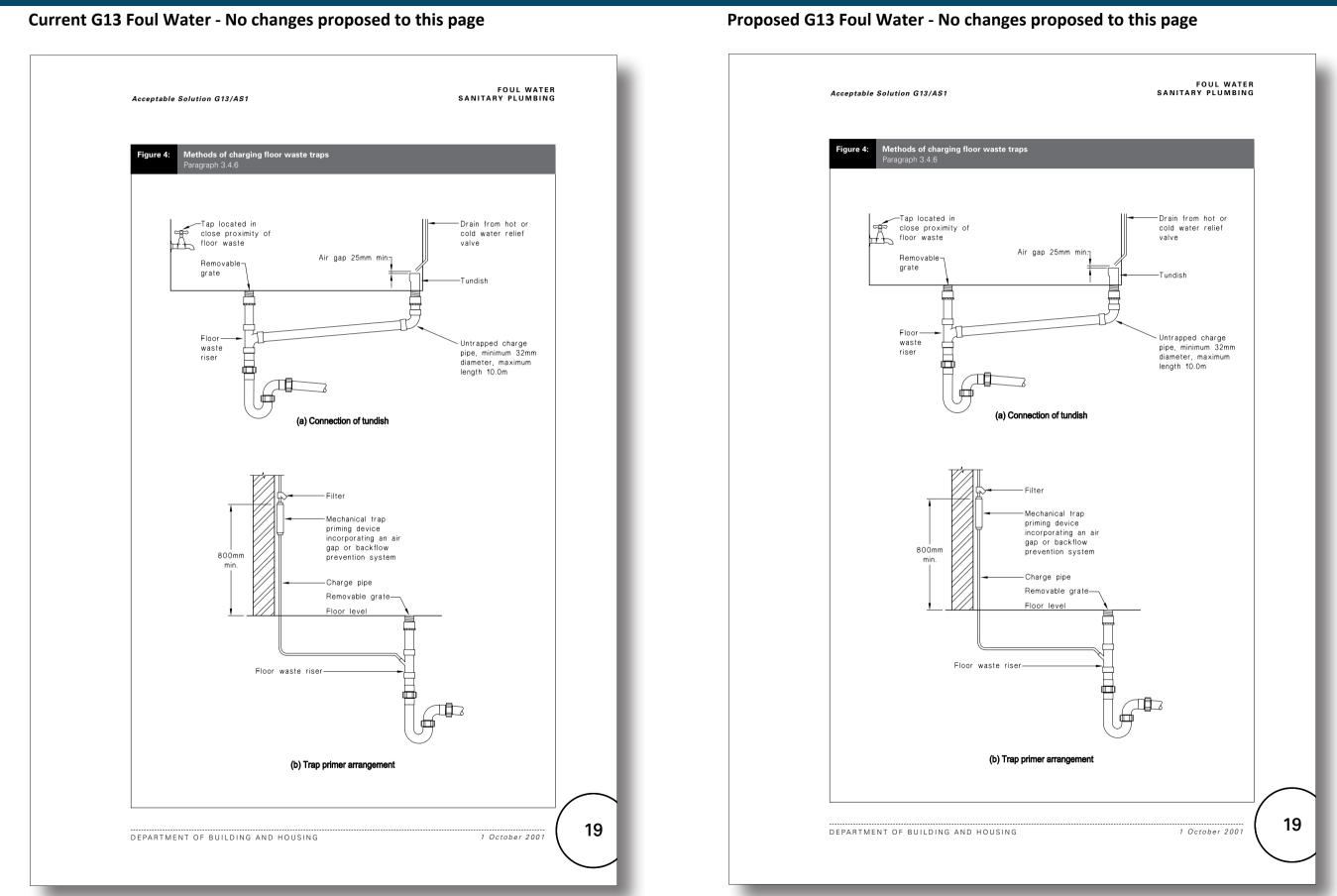
occur.

4.1.1 Discharge pipes shall follow the most practicable route with the least number of

4.2 Access for cleaning

4.2.1 Access points shall be provided in discharge pipes to allow the easy clearance of

4.2.2 Access points shall be provided at the following points:


a) At the junction of a soil discharge pipe with a discharge stack,

b) Where a number of changes of direction

c) In a *discharge pipe* where access to junctions or changes of direction are restricted, and

d) At the base of any soil stack at the point of connection to the drain.

Proprietary fittings that provide access into the pipe should be used at these points.

Current G13 Foul Water acceptable solutions and verification methods (Text to be amended shown in red)

FOUL WATER SANITARY PLUMBING

Acceptable Solution G13/AS1

4.3 Diameter

4.3.1 *Fixture discharge pipes* shall have diameters of not less than those given in Table 2 and shall not decrease in size in the direction of flow.

4.3.2 Where a *discharge pipe* receives the discharge from more than one *fixture*, the diameter of the discharge pipe shall be not less than that required in Table 4 using:

a) The discharge unit loading to be conveyed, calculated as the sum of the discharge unit loading given in Table 2, for all fixtures served, and

b) The gradient of the discharge pipe.

4.4 Gradient

4.4.1 The gradient of *discharge pipes* shall be not less than that required in Table 4 for the relevant discharge unit loading.

COMMENT:

The minimum gradients specified are necessary to avoid the risk of blockage.

4.5 Fixture discharge pipes serving waste water fixtures

4.5.1 Waste water fixture discharge pipes shall discharge either to:

a) A gully trap, in accordance with Figure 5 of G13/AS1 and Figure 3 of G13/AS2, or

b) A *discharge stack* as in Paragraph 4.7 and Figures 7 and 8.

4.5.2 Water seal protection: Waste water *fixture discharge pipes* shall be vented to comply with Paragraph 5.0 and as required in Table 5.

4.6 Fixture discharge pipes serving soil fixtures

4.6.1 *Fixture discharge pipes* serving *soil* fixtures shall discharge either:

a) Directly to the drain, as shown in Figure 6(1), or

b) To a stack, as in Paragraph 4.7 and as shown in Figures 7 and 8.

4.6.2 Water seal protection: Soil fixture discharge pipes shall be vented to comply with Paragraph 5.0 and as required in Table 5 (see Figure 6(2)).

from any one floor (Note 1) 1:20 Minimum gradient 1:30 1:40 1:50 1: 1:50 1:50 1: 1:50 1:50 1: 1:50 1:50 1: 1:50 1:50 1: 1:50 1:50 <th1:50< th=""> 1:50 1:50</th1:50<>	from any one floor (Note 1) 1:20 Minimum gradient 1:30 1:40 1:50 1:6 32 1	(mm)	Maximum discharge	Vertical stack		Grad	ed discharge pi	pes	
40 2 6 6 5 4 50 5 15 15 10 8 65 6 18 51 29 21 80 13 40 65 39 27 20 1 100 65 195 376 248 182 142 1	40 2 6 6 5 4 50 5 15 15 10 8 65 6 18 51 29 21 80 13 40 65 39 27 20 10 100 65 195 376 248 182 142 11	()	from any		1:20				1:6
50 5 15 15 10 8 65 6 18 51 29 21 80 13 40 65 39 27 20 1 100 65 195 376 248 182 142 1	50 5 15 15 10 8 65 6 18 51 29 21 80 13 40 65 39 27 20 10 100 65 195 376 248 182 142 11	32	1	1	1				
65 6 18 51 29 21 80 13 40 65 39 27 20 1 100 65 195 376 248 182 142 1	65 6 18 51 29 21 80 13 40 65 39 27 20 11 100 65 195 376 248 182 142 11	40	2	6	6	5	4		
80 13 40 65 39 27 20 1 100 65 195 376 248 182 142 1 Note: Shaded area = not permitted	80 13 40 65 39 27 20 10 100 65 195 376 248 182 142 11 Note: Shaded area = not permitted	50	5	15	15	10	8		
100 65 195 376 248 182 142 1 Note: Shaded area = not permitted	100 65 195 376 248 182 142 11 Note: Shaded area = not permitted	65	6	18	51	29	21		
Note: Shaded area = not permitted	Note: Shaded area = not permitted	80	13	40	65	39	27	20	16
Shaded area = not permitted	Shaded area = not permitted	100	65	195	376	248	182	142	11
				the <i>discharge st</i>	ack.				
		1. Total loac							
		1. Total loac							

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

Table 5

6(1), or

Figure 6(2)).

FOUL WATER SANITARY PLUMBING

4.3 Diameter

4.3.1 *Fixture discharge pipes* shall have diameters of not less than those given in Table 2 and shall not decrease in size in the direction of flow.

4.3.2 Where a *discharge pipe* receives the discharge from more than one *fixture*, the *diameter* of the *discharge pipe* shall be not less than that required in Table 4 using:

a) The discharge unit loading to be conveyed, calculated as the sum of the discharge unit loading given in Table 2, for all fixtures served, and

b) The gradient of the discharge pipe.

4.4 Gradient

4.4.1 The gradient of *discharge pipes* shall be not less than that required in Table 4 for the relevant discharge unit loading.

COMMENT:

The minimum gradients specified are necessary to avoid the risk of blockage.

4.5 Fixture discharge pipes serving waste water fixtures

4.5.1 Waste water fixture discharge pipes shall discharge either to:

a) A gully trap, in accordance with Figure 5 of G13/AS1 and Figure 3 of G13/AS2, or

b) A discharge stack as in Paragraph 4.7 and Figures 7 and 8.

Diameter	Maximum	Vertical stack		Grad	ed discharge p	ipes	
(mm)	discharge from any	(Note 1)		Mi	nimum gradie	nt	
	one floor		1:20	1:30	1:40	1:50	1:6
32	1	1	1				
40	2	6	6	5	4		
50	5	15	15	10	8		
65	6	18	51	29	21		
80	13	40	65	39	27	20	16
100	65	195	376	248	182	142	11
Note:							

20

xx November 2022

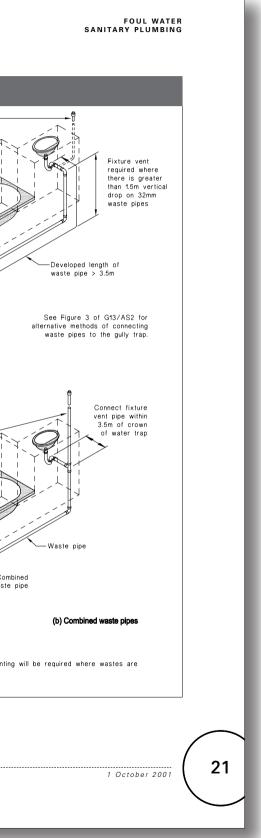
Acceptable Solution G13/AS1

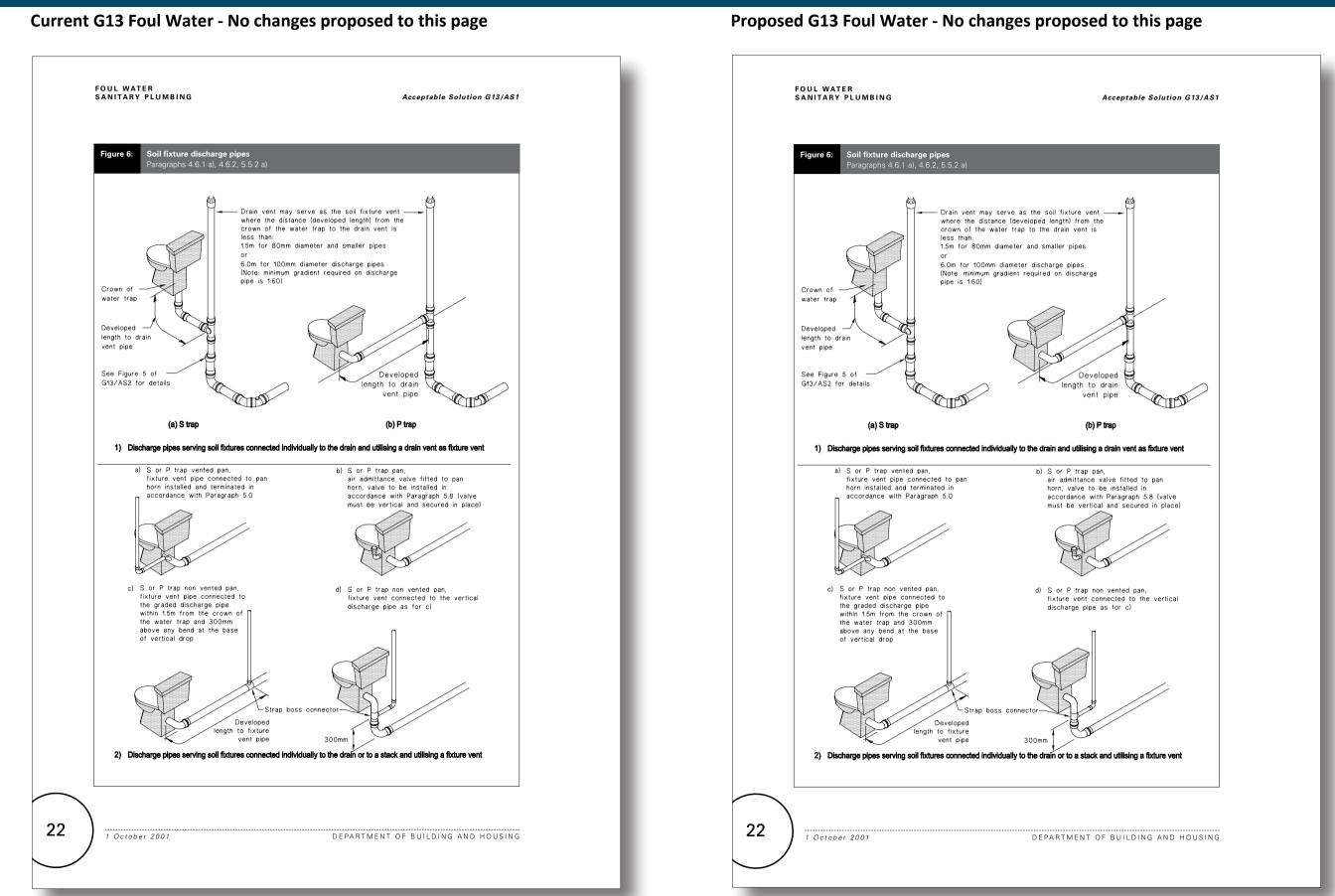
4.5.2 Water seal protection: Waste water fixture discharge pipes shall be vented to comply with Paragraph 5.0 and as required in

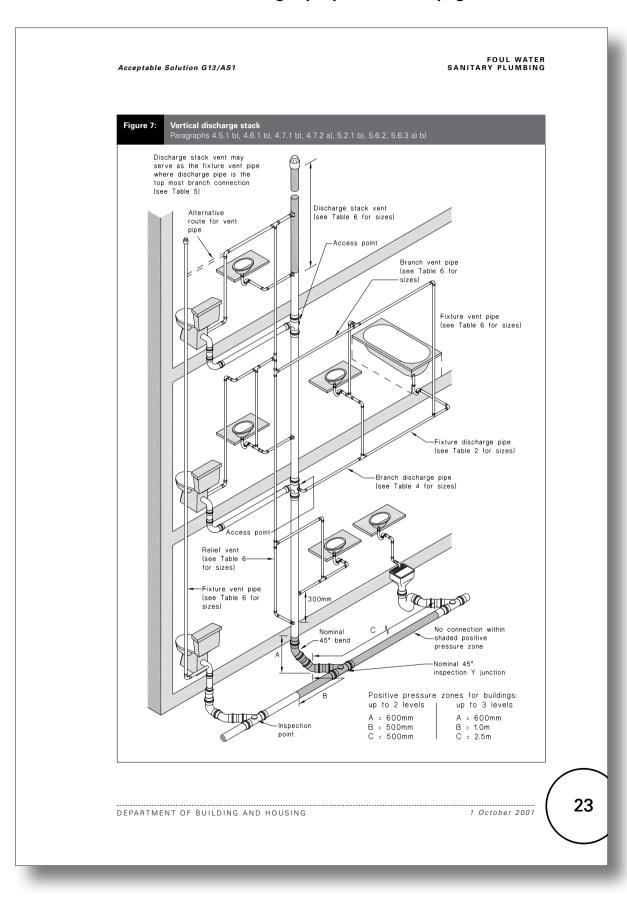
4.6 Fixture discharge pipes serving soil fixtures

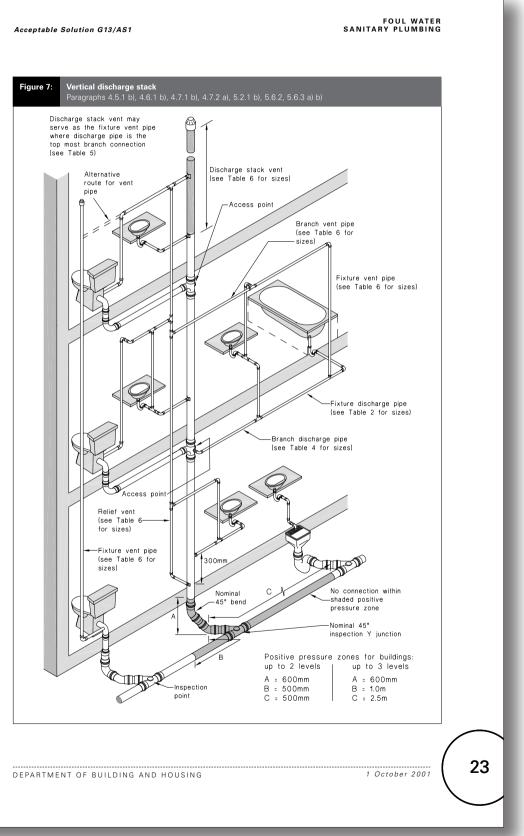
4.6.1 *Fixture discharge pipes* serving *soil* fixtures shall discharge either:

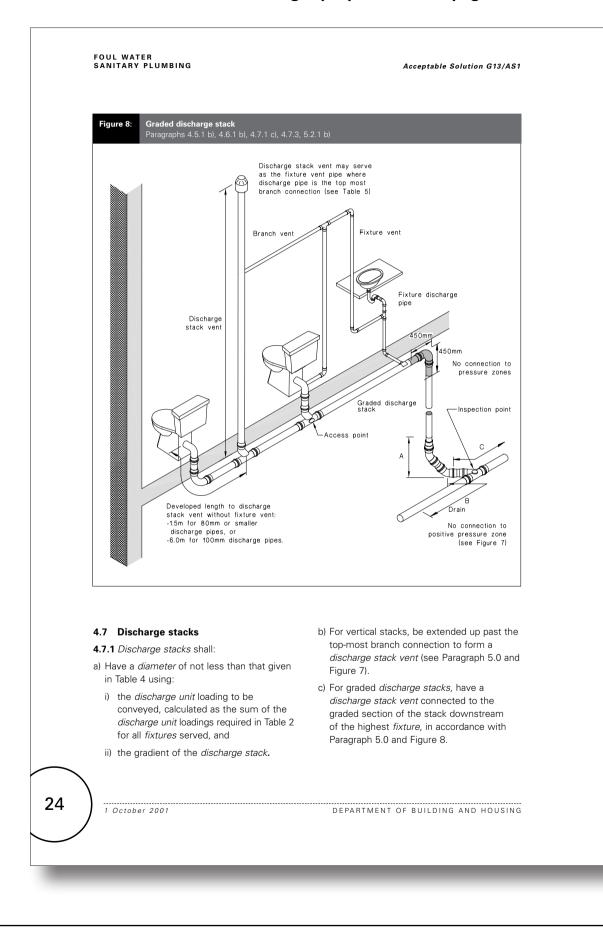
a) Directly to the drain, as shown in Figure

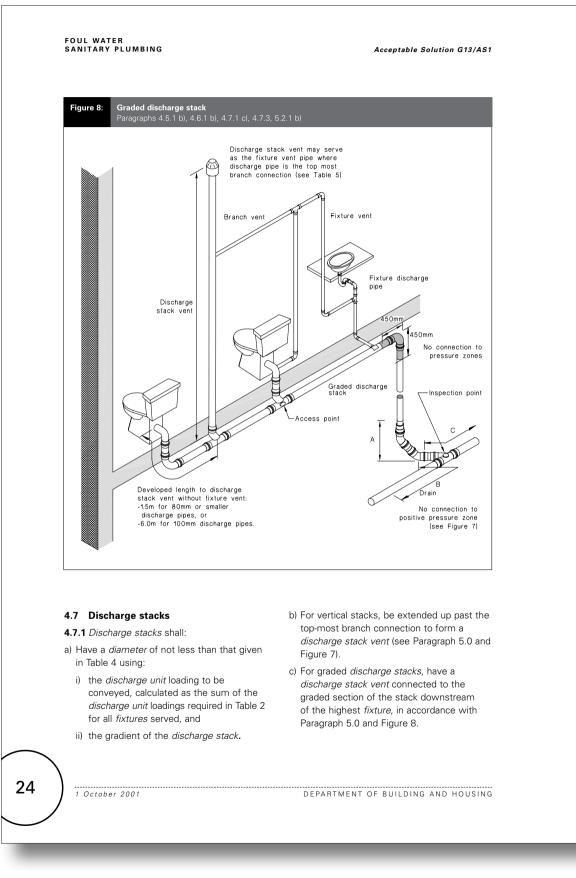

b) To a stack, as in Paragraph 4.7 and as shown in Figures 7 and 8.


4.6.2 Water seal protection: Soil fixture discharge pipes shall be vented to comply with Paragraph 5.0 and as required in Table 5 (see


4.6.3 Junctions in graded *soil fixture branch* discharge pipes shall be installed so that the entry level of each branch connection is elevated at an incline of not less than 15° above the horizontal (see G13/AS2 Figure 1(b)).


MINISTRY OF BUSINESS. INNOVATION AND EMPLOYMENT


Current G13 Foul Water - No changes proposed to this page Proposed G13 Foul Water - No changes proposed to this page FOUL WATER Sanitary plumbing Acceptable Solution G13/AS1 Acceptable Solution G13/AS1 Waste pipes discharging to a gully trap Waste pipes discharging to a gully trap iaure 5 Fixture vent-Fixture ventrequired where developed length of waste pipe is required where developed length of waste pipe is oreater than 3.5n greater than 3.5n Fixture vent required where there is greater than 1.5m vertical drop on 32mm waste pipes -Developed length of waste pipe > 3.5m -Developed length of waste pipe > 3.5m See Figure 3 of G13/AS2 for alternative methods of connecting waste pipes to the gully trap. (a) Individual waste pipes (a) Individual waste pipes Connect fixture vent pipe within 3.5m of crown of water trap Each waste pipe must be vented in accordance with Paragraph 5.0 Each waste pipe must be vented ir accordance with Paragraph 5.0 -Waste pipe Waste pip Combined mbined waste pipe waste pipe (b) Combined waste pipes Note: Upper floor waste pipes may discharge to a gully trap however venting will be required where wastes are combined or where specified lengths are exceeded. See Table 5. Waste pipes may also discharge to a stack. See Figures 7 and 8. Upper floor waste pipes may discharge to a gully trap however venting will be required where wastes are combined or where specified lengths are exceeded. See Table 5. Waste pipes may also discharge to a stack. See Figures 7 and 8. 21 DEPARTMENT OF BUILDING AND HOUSING 1 October 2001 DEPARTMENT OF BUILDING AND HOUSING



Current G13 Foul Water acceptable solutions and verification methods

(Text to be amended shown in red)

Acceptable Solution G13/AS1	FOUL WATER Sanitary Plumbing	Acceptable Solution G13/AS1
 4.7.2 Where discharge pipe connections to vertical discharge stacks: a) Are near the base of a discharge stack, they shall not be connected to the discharge stack or drain within the positive pressure zone as shown in Figure 7. 	5.1.2 <i>Vent pipes</i> that serve <i>fixtures</i> that discharge to a <i>gully trap</i> or <i>grease trap</i> shall be vented independently of any <i>vent pipe</i> system connected directly to the <i>foul water drainage system</i> .	 4.7.2 Where discharge pipe connections to vertical discharge stacks: a) Are near the base of a discharge stack, they shall not be connected to the discharge stack or drain within the positive pressure zone as shown in Figure 7.
COMMENT: Whenever a <i>discharge stack</i> incorporates a bend greater than 45°, a hydraulic jump may occur in the horizontal pipe downstream of the bend. The hydraulic jump can cause very high positive pressures in the pipe near the bend. If a branch pipe is connected to the <i>discharge stack</i> in this zone, these high pressures may blow out <i>water seals</i> connected to that branch pipe.	An independent <i>vent pipe</i> system for <i>fixtures</i> discharging to a <i>gully trap</i> is necessary to avoid the risk of <i>sewer</i> gases escaping through any <i>waste pipes</i> discharging to a <i>gully trap</i> . 5.2 Vent pipes 5.2.1 Vent pipes shall be one of the following	COMMENT: Whenever a <i>discharge stack</i> incorporates a bend greater than 45°, a hydraulic jump may occur in the horizontal pipe downstream of the bend. The hydraulic jump can cause very high positive pressures in the pipe near the bend. If a branch pipe is connected to the <i>discharge</i> <i>stack</i> in this zone, these high pressures may blow out <i>water seals</i> connected to that branch pipe.
 a) Consist of two branches entering the <i>discharge stack</i> at the same level, they shall have a double Y-junction with either: i) sweep entries, or ii) entries with an included angle of 90° (see Figure 9 (b)). b) Are at different levels, they shall not be connected to the <i>discharge stack</i> within the restricted entry zones shown in Figure 9 (a), unless the connection method is in accordance with Figures 9 (b) and (c). c.7.3 Where <i>discharge pipe</i> connections are to traded <i>discharge stacks</i> they shall not enter at apposite positions and if they are near bends hey shall not be made within 450 mm of any tend (see Figure 8). c.7.4 The change of direction at the base of ny vertical section in a <i>discharge stack</i> shall not one nominal 45° bends, or b) One nominal 45° bends, or c.1 Venting required c.1.1 Discharge pipes shall be vented where equired by Table 5. 	 types: a) A vertical or graded <i>fixture vent pipe</i> terminating in accordance with Paragraph 5.7.1 or 5.8.1 (see Figure 10 (a)), or b) An ascending graded or vertical <i>fixture vent</i> <i>pipe</i> to connect to: a branch <i>vent pipe</i>, as shown in Figure 10 (b), a <i>discharge stack vent</i> as shown in Figures 7, 8 and 10 (b), or a <i>relief vent</i>, as shown in Figure 7. The connection shall be made at a height of not less than 50 mm above the overflow level of the <i>sanitary fixture</i> it serves. 5.3 Diameter of vent pipes, branch vent pipes, discharge stack vents and relief vents shall have a <i>diameter</i> of no less than that given in Table 6. 	 b) Consist of two branches entering the <i>discharge stack</i> at the same level, they shall have a double Y-junction with either: sweep entries, or entries with an included angle of 90° (see Figure 9 (b)). c) Are at different levels, they shall not be connected to the <i>discharge stack</i> within the restricted entry zones shown in Figure 9 (a) unless the connection method is in accordance with Figures 9 (b) and (c). 4.7.3 Where <i>discharge pipe</i> connections are to graded <i>discharge stacks</i> they shall not enter at opposite positions and if they are near bends they shall not be made within 450 mm of any bend (see Figure 8). 4.7.4 Junctions in graded 100 mm diameter <i>discharge stacks</i> shall be installed so that the entry level of each branch connection is elevated at an incline of not less than 15° above the horizontal (see G13/AS2 Figure 1(b)). 4.7.5 The change of direction at the base of any vertical section in a <i>discharge stack</i> shall incorporate: Two nominal 45° bends, or One nominal 45° bend and a Yjunction.
		5.1 Venting required 5.1.1 <i>Discharge pipes</i> shall be vented where

DEPARTMENT OF BUILDING AND HOUSING

<u>1 October 2001</u> **25**

Proposed amendments to G13 Foul Water acceptable solutions and

FOUL WATER SANITARY PLUMBING

5.1.2 *Vent pipes* that serve *fixtures* that discharge to a *gully trap* or *grease trap* shall be vented independently of any *vent pipe* system connected directly to the *foul water drainage system*.

COMMENT:

verification methods (Proposed text in blue)

required by Table 5.

DEPARTMENT OF BUILDING AND HOUSING

An independent *vent pipe* system for *fixtures* discharging to a *gully trap* is necessary to avoid the risk of *sewer* gases escaping through any *waste pipes* discharging to a *gully trap*.

5.2 Vent pipes

5.2.1 *Vent pipes* shall be one of the following types:

 a) A vertical or graded *fixture vent pipe* terminating in accordance with Paragraph 5.7.1 or 5.8.1 (see Figure 10 (a)), or

b) An ascending graded or vertical *fixture vent pipe* to connect to:

- i) a branch *vent pipe*, as shown in Figure 10 (b),
- ii) a *discharge stack vent* as shown in Figures 7, 8 and 10 (b), or
- iii) a relief vent, as shown in Figure 7.

The connection shall be made at a height of not less than 50 mm above the overflow level of the *sanitary fixture* it serves.

5.3 Diameter of vent pipes

5.3.1 *Fixture vent pipes, branch vent pipes, discharge stack vents* and *relief vents* shall have a *diameter* of no less than that given in Table 6.

xx November 2022

25

Proposed G13 Foul Water - No changes proposed to this page

	equirements s 4.5.2, 4.6.2, 5.1.1, 5.5.1, 5.5.2 and 5.8.1	
Stacks		
Stack vent: All stacks Table 6. Venting with	discharging to another stack or to a <i>drain</i> require an open w an <i>air admittance valve</i> is permitted only on second and sub ent, if acting as main <i>drain</i> vent) is required to ventilate the	sequent stacks as at least one
	that receive discharges from 3 floor levels shall be vented v	with a relief vent sized in
Fixtures connected to	6. Relief vents shall be open vented.	
All connections to a sta	ack, except the highest connection, require venting by eithe d in accordance with Table 6.	r an open vent, or an <i>air</i>
Highest fixture conne		
	connection to a stack requires venting by either an open ver th Table 6, if the <i>discharge pipe</i> is longer than: pipe,	nt, or an <i>air admittance valve</i> ,
– 1.5 m for 80 mm j	pipe, and	
- 3.5 m for 65 to 32		
	ed to an unvented branch drain	and the second
All soil fixtures connect valve, sized in accorda	ted to an unvented branch <i>drain</i> require venting by either ar nce with Table 6.	n open vent, or an <i>air admittance</i>
Soil fixtures connected	ed to a vented drain with a gradient of less then 1:60	
1:60, require venting b	ted to a vented <i>drain</i> , where the branch and the vented <i>drai</i> y either an open vent, or an <i>air admittance valve</i> sized in acc	cordance with Table 6.
	s connected to a vented drain with a gradient of 1:60 or connected to a vented drain, where the branch and the vent	
	e venting by either an open vent, or an air admittance valve,	
	pipe, or includes a vertical drop greater than 2 m, and	
 1.5 m for 80 mm j Fixtures discharging 		
1. Fixtures connected	d to a combined <i>waste pipe</i> require venting by either an ope ordance with Table 6.	en vent, or an <i>air admittance</i>
admittance valve,	<i>lischarge pipes</i> over 3.5 m in length require venting by eithe sized in accordance with Table 6.	
 Where any 32 mm vent pipe or an air 	n <i>discharge pipe</i> has a vertical drop of greater than 1.5 m it s <i>admittance valve</i> .	shall be vented with a 32 mm
Venting of main drain	ns	
80 mm open vent.	g to the sewer or to an on-site disposal system are required	to be vented with a minimum
Venting of branch dra	ains ed to a vented <i>drain</i> that exceed 10 m in length require vent	
accordance with Table	6.	

Tal	ble 5: Venting irements Paragraphs 4.5.2, 4.6.2, 5.1.1, 5.5.1, 5.5.2 and 5.8.1
Sta	acks
Tab	ack vent: All stacks discharging to another stack or to a <i>drain</i> require an open ver ole 6. Venting with an <i>air admittance valve</i> is permitted only on second and subs on vent (the stack vent, if acting as main <i>drain</i> vent) is required to ventilate the <i>d</i>
	lief vent: All stacks that receive discharges from 3 floor levels shall be vented w cordance with Table 6. <i>Relief vents</i> shall be open vented.
Fix	tures connected to a stack
	connections to a stack, except the highest connection, require venting by either mittance valve, sized in accordance with Table 6.
Hig	hest fixture connected to a stack
	 individual highest connection to a stack requires venting by either an open ven ed in accordance with Table 6, if the <i>discharge pipe</i> is longer than:
_	6 m for 100 mm pipe,
_	1.5 m for 80 mm pipe, and 3.5 m for 65 to 32 mm pipes.
Soi	il fixtures connected to an unvented branch drain
	soil fixtures connected to an unvented branch <i>drain</i> require venting by either an ve, sized in accordance with Table 6.
Soi	il fixtures connected to a vented drain with a gradient of less then 1:60
	<i>soil fixtures</i> connected to a vented <i>drain</i> , where the branch and the vented <i>drain</i> 0, require venting by either an open vent, or an <i>air admittance valve</i> sized in acc
Ind	lividual soil fixtures connected to a vented drain with a gradient of 1:60 or
1:6	ividual <i>soil fixtures</i> connected to a vented <i>drain</i> , where the branch and the vente 0 or steeper, require venting by either an open vent, or an <i>air admittance valve</i> , f the <i>discharge pipe</i> is longer than:
-	6 m for 100 mm pipe, or includes a vertical drop greater than 2 m, and
-	1.5 m for 80 mm pipe <i>diameters.</i>
	tures discharging to a gully trap
1.	<i>Fixtures</i> connected to a combined <i>waste pipe</i> require venting by either an oper valve, sized in accordance with Table 6.
2.	Individual <i>fixture discharge pipes</i> over 3.5 m in length require venting by either admittance valve, sized in accordance with Table 6.
3.	Where any 32 mm discharge pipe has a vertical drop of greater than 1.5 m it s vent pipe or an air admittance valve.
	nting of main drains
Ma	in <i>drains</i> discharging to the <i>sewer</i> or to an on-site disposal system are required mm open vent.
Ma 80	

Acceptable Solution G13/AS1

nt, sized in accordance with equent stacks as at least one

ith a relief vent sized in

an open vent, or an air

, or an air admittance valve,

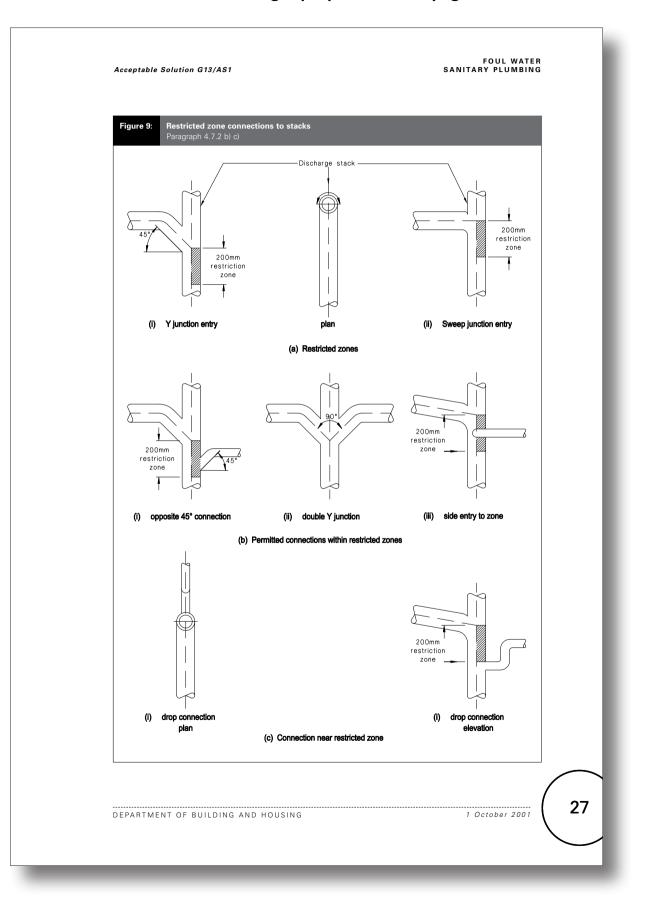
open vent, or an air admittance

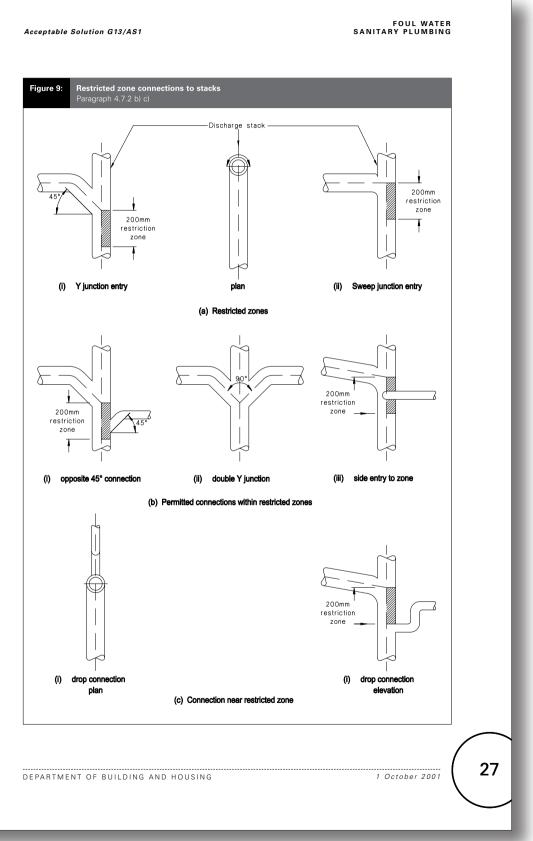
n are at a gradient of less than cordance with Table 6.

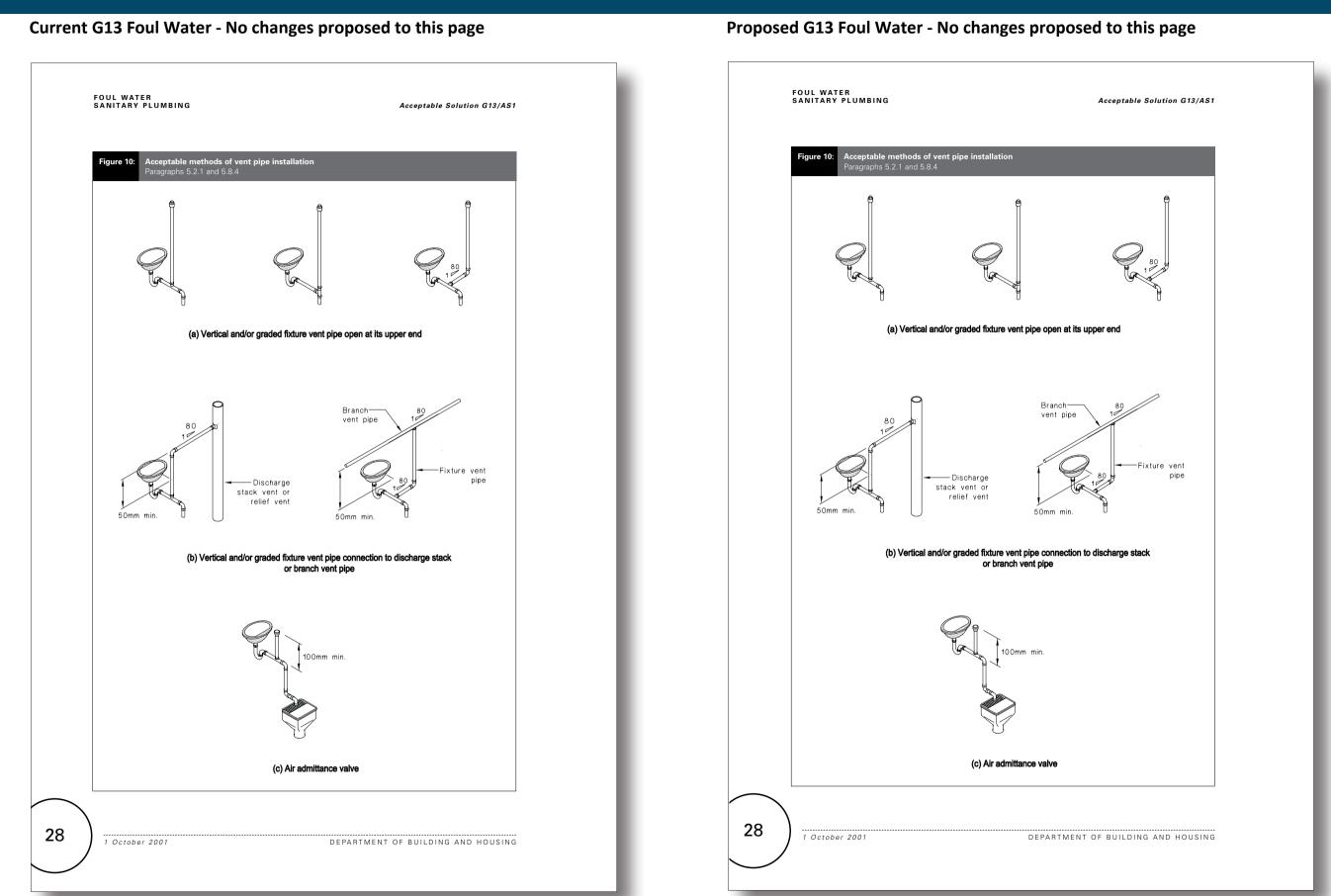
steeper

ed *drain* are at a gradient of sized in accordance with Table

n vent, or an *air admittance*

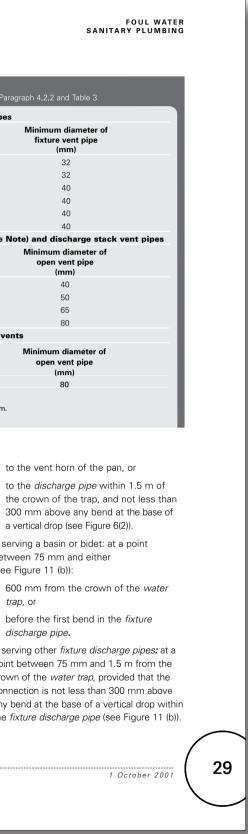

an open vent, or an *air*

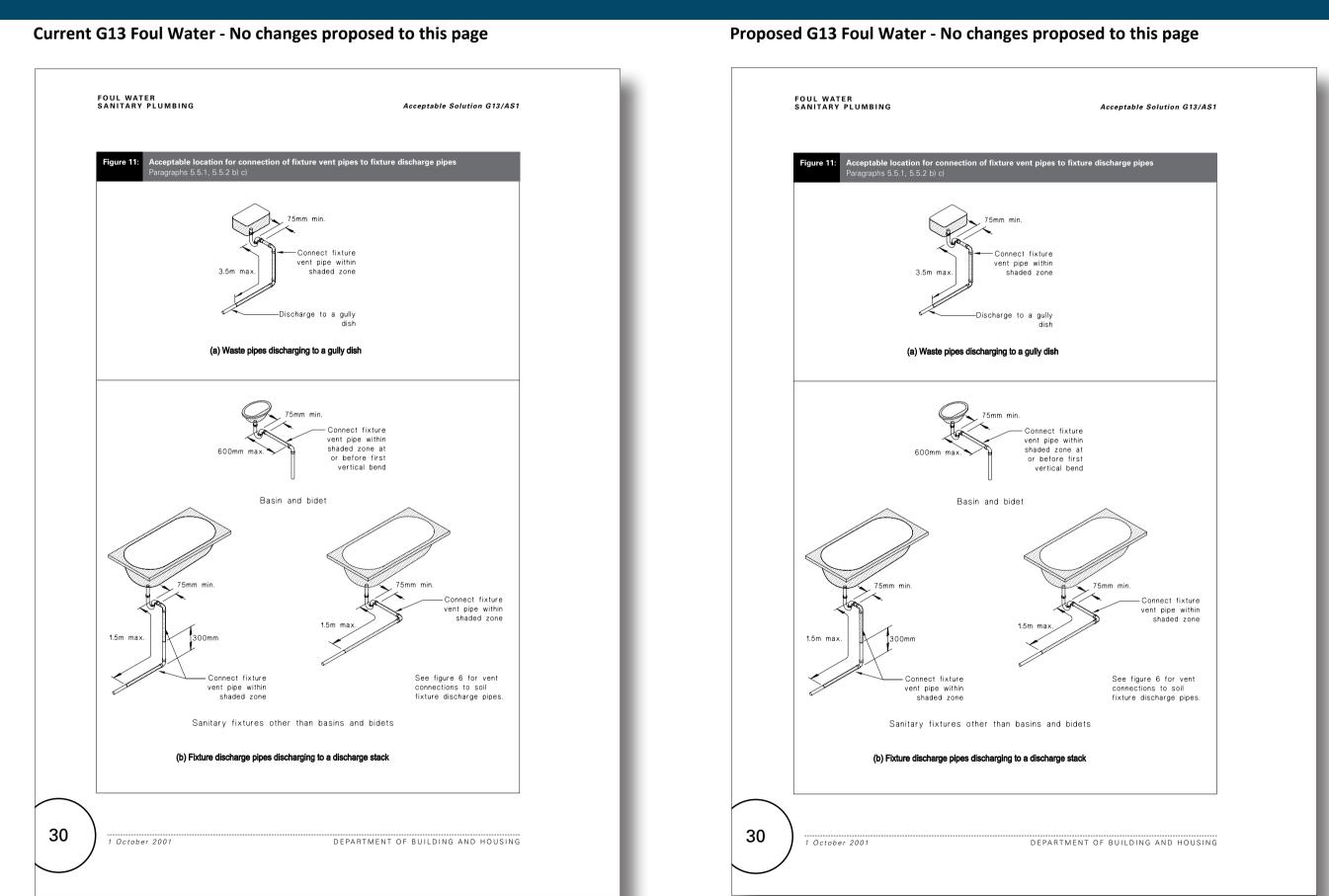

nall be vented with a 32 mm


to be vented with a minimum

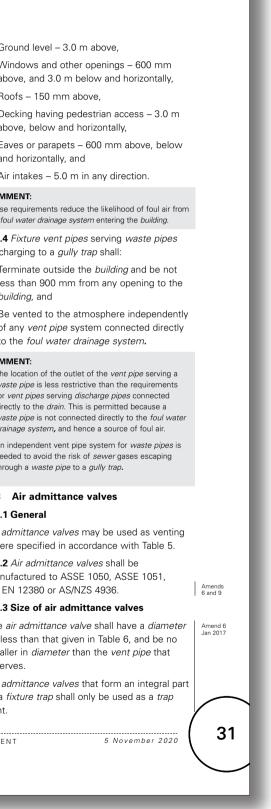
ng with an open vent, sized in

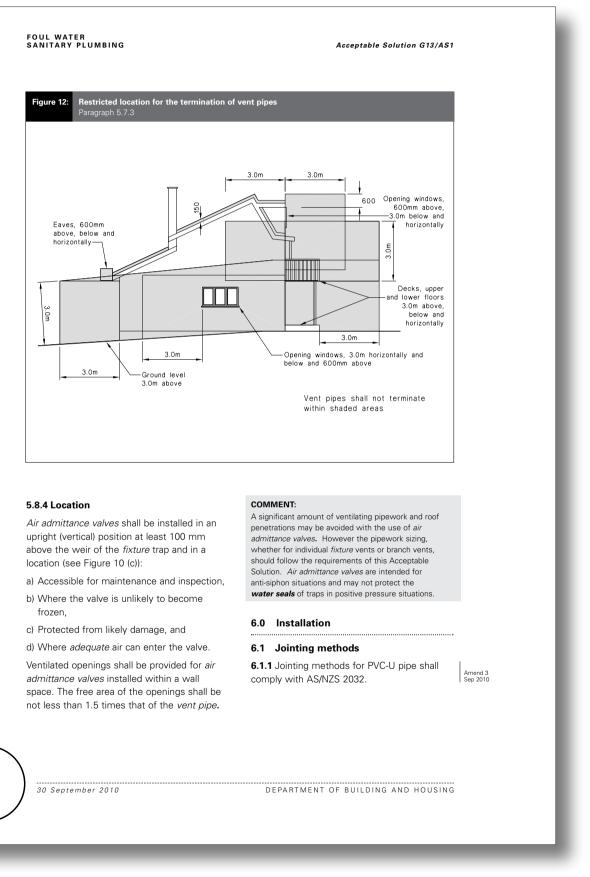
OF BUILDING AND HOUSING

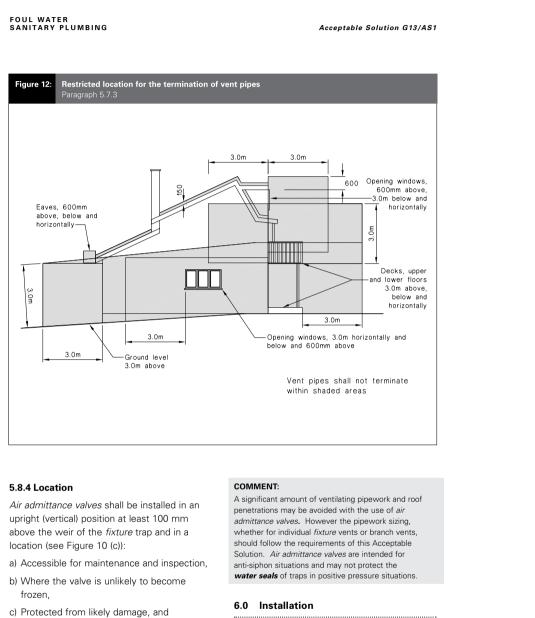




Acceptable Solution G13/AS1	SANITARY PLUMBIN
Table 6: Vent pipe sizes Paragraphs 5.3.1, 5.6.1, 5.6.3 c) and Table 5, G	613/AS2 Paragraph 4.2.2 and Table 3
For fixture	vent nines
Diameter of fixture discharge pipe	Minimum diameter of fixture vent pipe
(mm) 32 40	(mm) 32 32
40 50 65	40 40
80 100	40 40
	ent (see Note) and discharge stack vent pipes
Maximum discharge units connected to the discharge pipe	Minimum diameter of open vent pipe (mm)
Up to 15 16 to 65	40 50
66 to 376 More than 376	65 80
For main	n drain vents
Maximum discharge units connected to the discharge pipe	Minimum diameter of open vent pipe (mm)
Not applicable	80
5.4 Gradient of vent pipes	i) to the vent horn of the pan, or
5.4.1 <i>Fixture vent pipes</i> and <i>branch vent pipes</i> shall extend upwards from the point of	ii) to the <i>discharge pipe</i> within 1.5 m of the crown of the trap, and not less than
connection to the <i>fixture discharge pipe</i> to the open atmosphere, or to an <i>air admittance</i>	300 mm above any bend at the base of a vertical drop (see Figure 6(2)).
open atmosphere, or to an <i>air admittance</i> valve, with a gradient of not less than 1:80.	
open atmosphere, or to an air admittance	a vertical drop (see Figure 6(2)). b) If serving a basin or bidet: at a point
 open atmosphere, or to an <i>air admittance</i> valve, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.5.1 The <i>fixture vent pipe</i>, when required by Table 5 for <i>fixtures</i> discharging to a <i>gully trap</i>, shall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown of 	a vertical drop (see Figure 6(2)). b) If serving a basin or bidet: at a point between 75 mm and either (see Figure 11 (b)):
 open atmosphere, or to an <i>air admittance</i> valve, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.5.1 The <i>fixture vent pipe</i>, when required by Table 5 for <i>fixtures</i> discharging to a <i>gully trap</i>, shall connect to the <i>waste pipe</i> at a point 	 a vertical drop (see Figure 6(2)). b) If serving a basin or bidet: at a point between 75 mm and either (see Figure 11 (b)): i) 600 mm from the crown of the <i>water trap</i>, or ii) before the first bend in the <i>fixture discharge pipe</i>.
 open atmosphere, or to an <i>air admittance</i> valve, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.5.1 The <i>fixture vent pipe</i>, when required by Table 5 for <i>fixtures</i> discharging to a <i>gully trap</i>, shall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown of the <i>water trap</i>, as shown in Figure 11 (a). 5.5.2 The <i>fixtures</i> discharging to a <i>stack</i> or 	 a vertical drop (see Figure 6(2)). b) If serving a basin or bidet: at a point between 75 mm and either (see Figure 11 (b)): i) 600 mm from the crown of the <i>water trap</i>, or ii) before the first bend in the <i>fixture discharge pipe</i>. c) If serving other <i>fixture discharge pipes</i>: at a point between 75 mm and 1.5 m from the crown of the <i>water trap</i>, provided that the connection is not less than 300 mm above


Table 6: Vent pipe sizes Paragraphs 5.3.1, 5.6.1, 5.6.3 c) and Table
For fixt
Diameter of fixture discharge pipe
(mm) 32
40
50
65 80
100
For branch vent, branch drain vent, reli
Maximum discharge units connected to the discharge pipe
Up to 15
16 to 65
66 to 376 More than 376
For
Maximum discharge units connected to the discharge pipe
Not applicable
4 Gradient of vent nines
.4 Gradient of vent pipes .4.1 Fixture vent pipes and branch vent pip
.4.1 Fixture vent pipes and branch vent pip hall extend upwards from the point of onnection to the fixture discharge pipe to t
.4.1 Fixture vent pipes and branch vent pip hall extend upwards from the point of onnection to the fixture discharge pipe to t pen atmosphere, or to an air admittance
.4.1 Fixture vent pipes and branch vent pip hall extend upwards from the point of onnection to the fixture discharge pipe to t
.4.1 Fixture vent pipes and branch vent pip hall extend upwards from the point of onnection to the fixture discharge pipe to t pen atmosphere, or to an air admittance
.4.1 Fixture vent pipes and branch vent pip hall extend upwards from the point of onnection to the fixture discharge pipe to t open atmosphere, or to an air admittance ralve, with a gradient of not less than 1:80.
 i.4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to t open atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required b
 i.4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to to ppen atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required by able 5 for <i>fixtures</i> discharging to a <i>gully tra</i>
 6.4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to the point atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 6.5 Connection of vents to fixture discharge pipes 6.1 The <i>fixture vent pipe</i>, when required the rable 5 for <i>fixtures</i> discharging to a <i>gully tra</i> hall connect to the <i>waste pipe</i> at a point
 6.4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to open atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required that able 5 for <i>fixtures</i> discharging to a <i>gully tra</i> hall connect to the <i>waste pipe</i> at a point
 4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to open atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5. Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required that be 5 for <i>fixtures</i> discharging to a <i>gully tra</i> hall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crowr he <i>water trap</i>, as shown in Figure 11 (a).
 4.1 <i>Fixture vent pipes</i> and <i>branch vent pip</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to open atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required that connect to the <i>waste pipe</i> at a point hell connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown he <i>water trap</i>, as shown in Figure 11 (a). 5.2 The <i>fixture vent pipe</i>, when required that a point between 75 mm and 3.5 m from the crown hell connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown hell <i>s</i> for <i>fixtures</i> discharging to a <i>stack</i> of the pipe.
 6.4.1 <i>Fixture vent pipes</i> and <i>branch vent pipe</i> hall extend upwards from the point of connection to the <i>fixture discharge pipe</i> to the pen atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 7.5 Connection of vents to fixture discharge pipes 8.5.1 The <i>fixture vent pipe</i>, when required by able 5 for <i>fixtures</i> discharging to a <i>gully trap</i> hall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown he <i>water trap</i>, as shown in Figure 11 (a). 8.5.2 The <i>fixtures</i> vent pipe, when required by able 5 for <i>fixtures</i> discharging to a <i>stack</i> or litectly to the drainage system, shall connect
 i.4.1 <i>Fixture vent pipes</i> and <i>branch vent pipe</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to the pren atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5.5 Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required by fable 5 for <i>fixtures</i> discharging to a <i>gully trap</i> hall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown he <i>water trap</i>, as shown in Figure 11 (a). 5.2 The <i>fixture vent pipe</i>, when required by a state of the fixture vent pipe.
 6.4.1 <i>Fixture vent pipes</i> and <i>branch vent pipe</i> hall extend upwards from the point of connection to the <i>fixture discharge pipe</i> to the pipe atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 7.5 Connection of vents to fixture discharge pipes 8.5.1 The <i>fixture vent pipe</i>, when required be able 5 for <i>fixtures</i> discharging to a <i>gully tra</i> hall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown he <i>water trap</i>, as shown in Figure 11 (a). 8.5.2 The <i>fixtures</i> discharging to a <i>stack</i> or lirectly to the drainage system, shall connection for the discharging to a <i>stack</i> or lirectly to the drainage system, shall connection for the discharging to the discharging t
 4.1 <i>Fixture vent pipes</i> and <i>branch vent pi</i> hall extend upwards from the point of onnection to the <i>fixture discharge pipe</i> to open atmosphere, or to an <i>air admittance ralve</i>, with a gradient of not less than 1:80. 5. Connection of vents to fixture discharge pipes 5.1 The <i>fixture vent pipe</i>, when required rable 5 for <i>fixtures</i> discharging to a <i>gully tra</i> hall connect to the <i>waste pipe</i> at a point between 75 mm and 3.5 m from the crown he <i>water trap</i>, as shown in Figure 11 (a). 5.2 The <i>fixture vent pipe</i>, when required rable 5 for <i>fixtures</i> discharging to a <i>stack</i> o lirectly to the drainage system, shall connect


Proposed G13 Foul Water - No changes proposed to this page


Acceptable Solution G13/AS1	FOUL WATER Sanitary Plumbing		Acceptable Solution G13/AS1
5.6 Discharge stack and relief vents	a) Ground level – 3.0 m above,		5.6 Discharge stack and relief vent
 5.6.1 The discharge stack vent, if also acting as a drain vent pipe shall have a diameter of not less than 80 mm. Where not acting as a drain vent the discharge stack vent pipe shall have a diameter of not less than that required in Table 6. 5.6.2 Every discharge stack serving sanitary fixtures or sanitary appliances from 3 floors 	 b) Windows and other openings – 600 mm above, and 3.0 m below and horizontally, c) Roofs – 150 mm above, d) Decking having pedestrian access – 3.0 m above, below and horizontally, e) Eaves or parapets – 600 mm above, below and horizontally, and 		 5.6.1 The discharge stack vent, if also ac as a drain vent pipe shall have a diameter not less than 80 mm. Where not acting a drain vent the discharge stack vent pipe have a diameter of not less than that rec in Table 6. 5.6.2 Every discharge stack serving sanifixtures or sanitary appliances from 3 floor
within a <i>building</i> shall include a <i>relief vent</i> pipe as shown in Figure 7.	f) Air intakes – 5.0 m in any direction. COMMENT:		within a <i>building</i> shall include a <i>relief ve</i> as shown in Figure 7.
5.6.3 <i>Relief vent</i> pipes shall:	These requirements reduce the likelihood of foul air from the <i>foul water drainage system</i> entering the <i>building</i> .		5.6.3 <i>Relief vent</i> pipes shall:
 a) Connect to the bottom of the <i>discharge</i> stack at no less than 300 mm below the lowest <i>discharge pipe</i> served, and at an angle of 45°, as shown in Figure 7, 	 5.7.4 Fixture vent pipes serving waste pipes discharging to a gully trap shall: a) Terminate outside the building and be not loss than 200 mm from any apping to the service of the ser		 a) Connect to the bottom of the <i>dischar</i> stack at no less than 300 mm below lowest <i>discharge pipe</i> served, and at angle of 45°, as shown in Figure 7, b) Po extended upwords at a gradient of the standard upwords at a gradient of the
b) Be extended upwards at a gradient of no less than 1:80 to connect to the <i>discharge</i> <i>stack vent</i> , as shown in Figure 7, or extend separately to the atmosphere as an open vent, and	less than 900 mm from any opening to the <i>building</i>, andb) Be vented to the atmosphere independently of any <i>vent pipe</i> system connected directly to the <i>foul water drainage system</i>.		b) Be extended upwards at a gradient of less than 1:80 to connect to the <i>disch</i> stack vent, as shown in Figure 7, or e separately to the atmosphere as an of vent, and
c) Have a <i>diameter</i> of no less than that given in Table 6.	COMMENT: 1. The location of the outlet of the vent pipe serving a waste pipe is less restrictive than the requirements		c) Have a <i>diameter</i> of no less than that in Table 6.
 5.7 Termination of open vent pipes 5.7.1 Open vent pipes shall terminate outside the <i>building</i> in accordance with Paragraphs 5.7.2 and 5.7.3 or 5.7.4. 5.7.2 Vent pipes shall terminate outside the <i>building</i> and: 	 for vent pipes serving discharge pipes connected directly to the drain. This is permitted because a waste pipe is not connected directly to the foul water drainage system, and hence a source of foul air. 2. An independent vent pipe system for waste pipes is needed to avoid the risk of sewer gases escaping through a waste pipe to a gully trap. 		 5.7 Termination of open vent pipe 5.7.1 Open vent pipes shall terminate of the building in accordance with Paragrap 5.7.2 and 5.7.3 or 5.7.4. 5.7.2 Vent pipes shall terminate outside building and:
a) Be at a height of not less than 50 mm above the overflow level of the highest <i>sanitary fixture</i> they serve, and	5.8 Air admittance valves 5.8.1 General		 a) Be at a height of not less than 50 million above the overflow level of the higher sanitary fixture they serve, and
COMMENT: The height of 50 mm above the overflow level is to ensure that the <i>vent pipe</i> does not convey <i>foul water</i> in the event of the <i>discharge pipe</i> becoming blocked.	<i>Air admittance valves</i> may be used as venting where specified in accordance with Table 5. 5.8.2 <i>Air admittance valves</i> shall be manufactured to ASSE 1050, ASSE 1051,		COMMENT: The height of 50 mm above the overflow level is ensure that the <i>vent pipe</i> does not convey <i>foul v</i> the event of the <i>discharge pipe</i> becoming blocker
b) Incorporate a means to prevent the entry of birds and vermin and shall have an open area not less than 80% of the cross-sectional area of the <i>vent pipe</i> they serve.	BS EN 12380 or AS/NZS 4936. 5.8.3 Size of air admittance valves The <i>air admittance valve</i> shall have a <i>diameter</i> no less than that given in Table 6, and be no smaller in <i>diameter</i> than the <i>vent pipe</i> that	Amends 6 and 9 Amend 6 Jan 2017	b) Incorporate a means to prevent the el birds and vermin and shall have an open area not less than 80% of the cross-sectional area of the vent pipe t serve.
5.7.3 Open <i>vent pipes</i> serving <i>discharge pipes</i> directly connected to the <i>foul water drainage system</i> shall terminate no closer to <i>building elements</i> than (see Figure 12):	it serves. <i>Air admittance valves</i> that form an integral part of a <i>fixture trap</i> shall only be used as a <i>trap</i> vent.		5.7.3 Open <i>vent pipes</i> serving <i>discharge</i> directly connected to the <i>foul water dra system</i> shall terminate no closer to <i>built elements</i> than (see Figure 12):
MINISTRY OF BUSINESS, INNOVATION AND EMP		31	MINISTRY OF BUSINESS, INNOVATION

FOUL WATER SANITARY PLUMBING

Proposed G13 Foul Water - No changes proposed to this page

d) Where *adequate* air can enter the valve.

admittance valves installed within a wall

30 September 2010

Ventilated openings shall be provided for air

space. The free area of the openings shall be

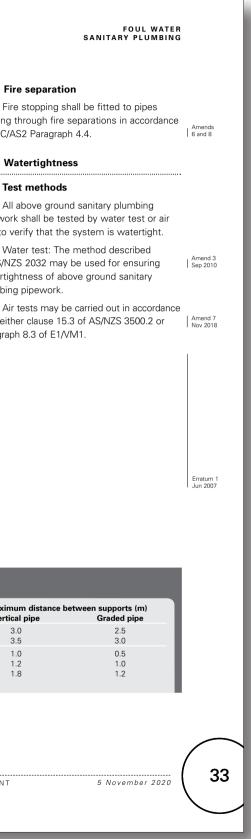
not less than 1.5 times that of the vent pipe.

- - comply with AS/NZS 2032.

32

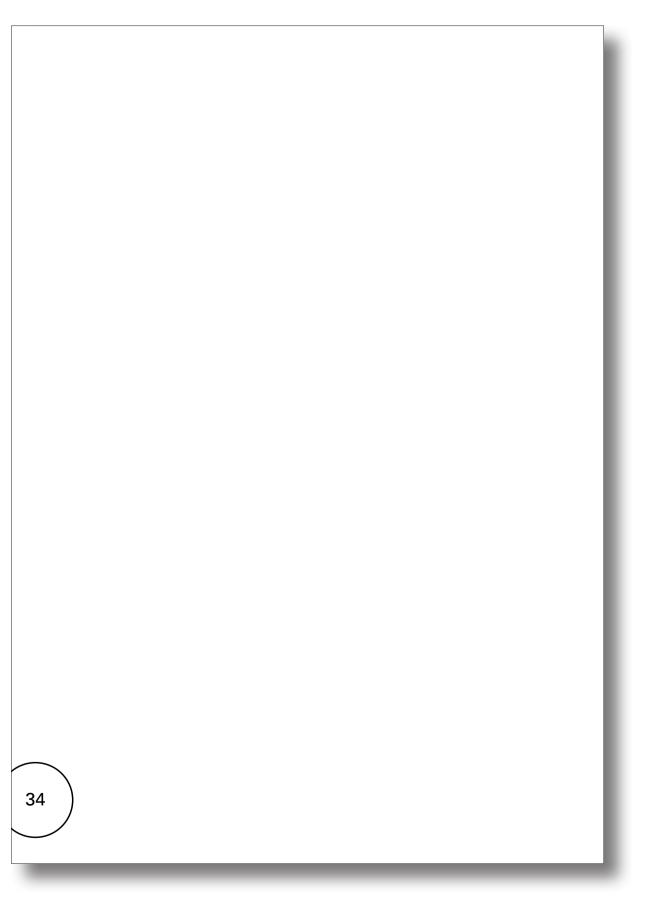
32

BUILDING CODE UPDATE 2022 – PLUMBING AND DRAINAGE

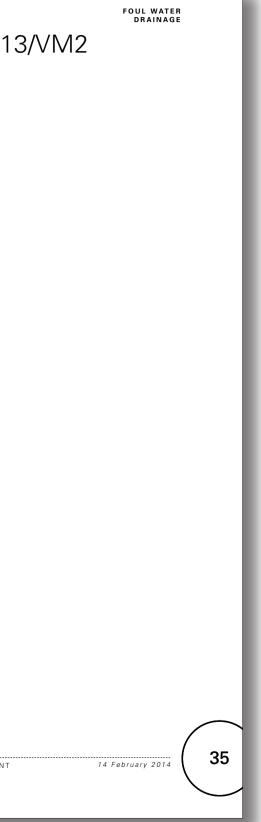

6.1 Jointing methods

6.1.1 Jointing methods for PVC-U pipe shall

Amend 3 Sep 2010


DEPARTMENT OF BUILDING AND HOUSING

							Acceptable Solution G13/A	-
	6.2 Pipe supports6.2.1 Pipes shall be sup exceeding those in Table	•	6.4 Fire separation 6.4.1 Fire stopping showing through fire stopping through fire stopp				6.2 Pipe supports6.2.1 Pipes shall be suppexceeding those in Table	
Amend 3 Sep 2010	6.2.2 For PVC-U pipes of greater than 60°C, supp	arrying discharges of ort for the pipe shall	7.0 Watertightne	4.4.	Amends 6 and 8	Amend 3 Sep 2010	6.2.2 For PVC-U pipes ca greater than 60°C, suppo	arrying discharges of ort for the pipe shall
Amend 3 Sep 2010	be in accordance with F AS/NZS 2032.	aragraph 6.3.2 Of	7.1 Test methods			Amend 3 Sep 2010	be in accordance with Pa AS/NZS 2032.	aragraph 6.3.2 of
Amend 9 Nov 2020	COMMENT: Supports are required to en gradient does not fall below in Table 4.			d sanitary plumbing ted by water test or air system is watertight.		Amend 9 Nov 2020	COMMENT: Supports are required to ens gradient does not fall below in Table 4.	
	6.3 Thermal moven	nent	7.1.2 Water test: The in AS/NZS 2032 may	be used for ensuring	Amend 3 Sep 2010		6.3 Thermal movem	ent
Amend 3 Sep 2010	6.3.1 The <i>plumbing sys</i> accommodate without a longitudinal movement temperature changes. A pipes shall incorporate	ailure the expected in pipes resulting from Il copper and PVC-U expansion joints. The	,	e carried out in accordanc 3 of AS/NZS 3500.2 or	e Amend 7 Nov 2018	Amend 3 Sep 2010	 6.3.1 The <i>plumbing syste</i> accommodate without failongitudinal movement in temperature changes. All pipes shall incorporate end 	ilure the expected pipes resulting from I copper and PVC-U xpansion joints. The
Amend 3 Sep 2010	provisions described in AS/NZS 2032 shall be u					Amend 3 Sep 2010	provisions described in S AS/NZS 2032 shall be us	
	6.3.2 At supports, and a penetrations not incorporjoints, movement shall using pipe sleeves or a lagging material.	prating expansion be accommodated					6.3.2 At supports, and at penetrations not incorpo joints, movement shall b using pipe sleeves or a c lagging material.	rating expansion e accommodated
Amend 3 Sep 2010	COMMENT: 1. Thermal expansion will car to extend 0.8 mm for each temperature.				Erratum 1 Jun 2007	Amend 3 Sep 2010	COMMENT: 1. Thermal expansion will cau to extend 0.8 mm for each temperature.	-
	 Provision for thermal move expansion joints, with fixe prevents damage to pipes 	d and sliding supports,					 Provision for thermal move expansion joints, with fixed prevents damage to pipes a 	and sliding supports,
	Table 7: Distances Bett Paragraph 6.2.1	ween Supports	-				Table 7: Distances Betw Paragraph 6.2.1	reen Supports
	Material	Pipe diameter (mm)	Maximum distance b Vertical pipe	Graded pipe			Material	Pipe diameter (mm)
Amend 3 Sep 2010	Copper pipes PVC-U pipes	32 to 50 greater than 50 32 to 50 65 to 100 greater than 100	3.0 3.5 1.0 1.2 1.8	2.5 3.0 0.5 1.0 1.2		Amend 3 Sep 2010	Copper pipes PVC-U pipes	32 to 50 greater than 50 32 to 50 65 to 100 greater than 100
	MINISTRY OF BUSINES	S, INNOVATION AND EF	//PLOYMENT	5 November 2020	33		MINISTRY OF BUSINESS	, INNOVATION AND EI


Proposed G13 Foul Water - No changes proposed to this page

34

Drainage Drainage 1.0 Drainage 1.0 Drainage 1.0.1 No specific methods have been adopted 1.0.1 No specific methods have been adopted		Verification Method G13/VM2 Verification Method G13/VM2	FOUL WATER DRAINAGE		Verification Method G13/VM2 Verification Method G
1.0 Drainage 1.0 Drainage 1.0.1 No specific methods have been adopted for verifying compliance with the Performance of NZBC G13. 1.0.1 No specific methods have been adopted for verifying compliance with the Performance of NZBC G13. Amend 5 COMMENT: Amend 5 Amend 5					
Amend 5 Amend 5					
COMMENT:		1.0.1 No specific methods have been adopted for verifying compliance with the Performance			1.0.1 No specific methods have been adopted for verifying compliance with the Performance
	Amend 5 Feb 2014	COMMENT:		Amend 5 Feb 2014	COMMENT:
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 14 February 2014 35		MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT	14 February 2014 35		MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEN

Proposed G13 Foul Water - No changes proposed to this page

36

Current G13 Foul Water acceptable solutions and verification methods

(Text to be amended shown in red)

Acceptable Solution G13/AS2

Acceptable Solution G13/AS2 Drainage

1.0 Scope

1.0.1 This Acceptable Solution is for below ground non-pressure (gravity flow) foul water drains having a diameter of no greater than 150 mm

1.0.2 It does not apply to foul water drainage systems where it is necessary to dispose of industrial liquid wastes, chemical or toxic wastes and other wastes which cannot be discharged to a sewer without pre-treatment. See G14/VM1.

2.0 Materials

2.0.1 Materials for drainage pipes and joints shall comply with the appropriate standards shown in Table 1

2.1 Fill materials

2.1.1 Fill materials, as shown in Figure 7, shall he

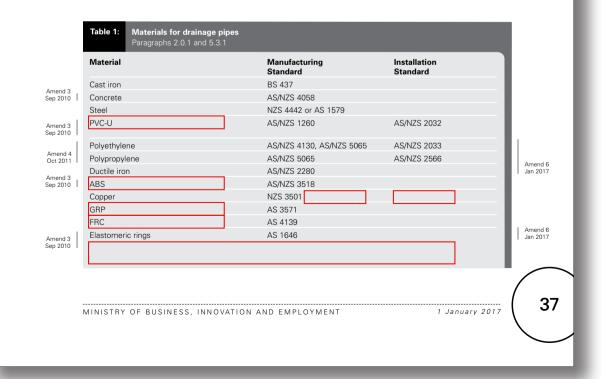
a) Bedding material of clean granular non-cohesive material with a maximum particle size of 20 mm,

b) Selected fill of fine-grained soil or granular material that is free from topsoil and rubbish and has a maximum particle size of 20 mm, or

FOUL WATER DRAINAGE

c) Ordinary fill of excavated material

3.0 Design


3.1 Bends

3.1.1 To reduce the risk of blockages, the foul water drainage system shall:

- a) Have a simple layout that incorporates the least number of changes of direction
- b) Use bends having a radius of the practical maximum, and
- c) Be laid only in straight lines between bends or junctions (both horizontally and vertically).

3.2 Junctions

3.2.1 Any connection to a drain, excluding vent pipe connections, shall be made by means of sweep or oblique junctions. The angle that the branch makes at the point of entry with the main drain, shall be no greater than 60° (see Fiaure 1).

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

Acceptable Solution G13/AS2

Acceptable Solution G13/AS2 Drainage

1.0 Scope **1.0.1** This Acceptable Solution is for below be: ground non-pressure (gravity flow) foul water drains having a diameter of no greater than 150 mm. **1.0.2** It does not apply to *foul water drainage* systems where it is necessary to dispose of industrial liquid wastes, chemical or toxic wastes and other wastes which cannot be discharged to a sewer without pre-treatment. See G14/VM1 2.0 Materials **2.0.1** Materials for drainage pipes and joints shall comply with the appropriate standards shown in Table 1. COMMENT: Products for use in *foul water drainage* systems that have been certified and marked in accordance with the requirements of the Australian WaterMark Certification Scheme and listed on the WaterMark Product Database may be deemed to meet the requirements of Paragraph 2.0.1 for their intended purposes.

	Paragraphs 2.0.1 and 5.3.1	
	Material	Manufacturin Standard
4	Cast iron	BS 437
Amend 3 Sep 2010	Concrete	AS/NZS 4058
	Steel	NZS 4442 or A
Amend 3 Sep 2010	Unplasticised polyvinyl chloride (PVC-U)	AS/NZS 1260
	Polyethylene	AS/NZS 4130,
Amend 4 Oct 2011	Polypropylene	AS/NZS 5065
	Ductile iron	AS/NZS 2280
Amend 3 Sep 2010	Acrylonitrile butadiene styrene (ABS)	AS/NZS 3518
	Copper	NZS 3501, AS
Amend 3 Sep 2010	Glass-filament-reinforced thermosetting plastic (GRP)	AS 3571
	Fiber reinforced concrete (FRC)	AS 4139
	Elastomeric rings	AS 1646
	Stainless steel	BS EN 1124 P
	Vitrified clay	AS 1741, BS E

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

FOUL WATER DRAINAGE

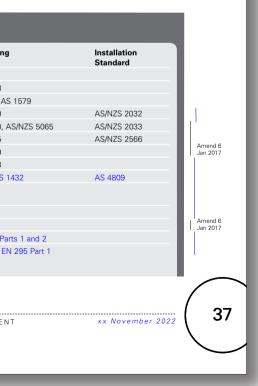
2.1 Fill materials

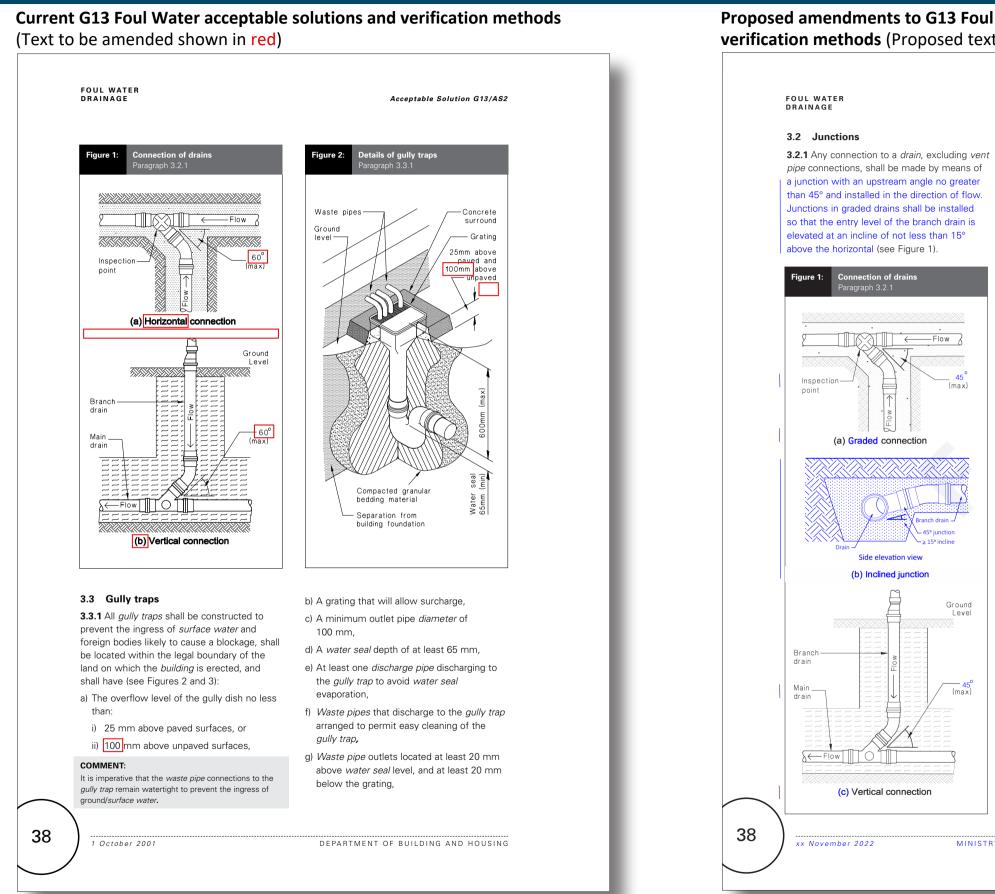
2.1.1 Fill materials, as shown in Figure 7, shall

a) Bedding material of clean granular non-cohesive material with a maximum particle size of 20 mm,

b) Selected fill of fine-grained soil or granular material that is free from topsoil and rubbish and has a maximum particle size of 20 mm, or c) Ordinary fill of excavated material

3.0 Design


3.1 Bends


3.1.1 To reduce the risk of blockages, the foul water drainage system shall

a) Have a simple layout that incorporates the least number of changes of direction,

b) Use bends having a radius of the practical maximum, and

c) Be laid only in straight lines between bends or junctions (both horizontally and vertically).

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

FOUL WATER DRAINAGE

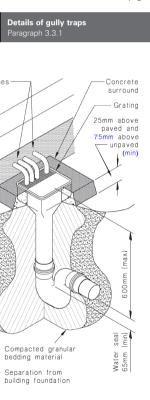
3.2 Junctions

3.3 Gully traps

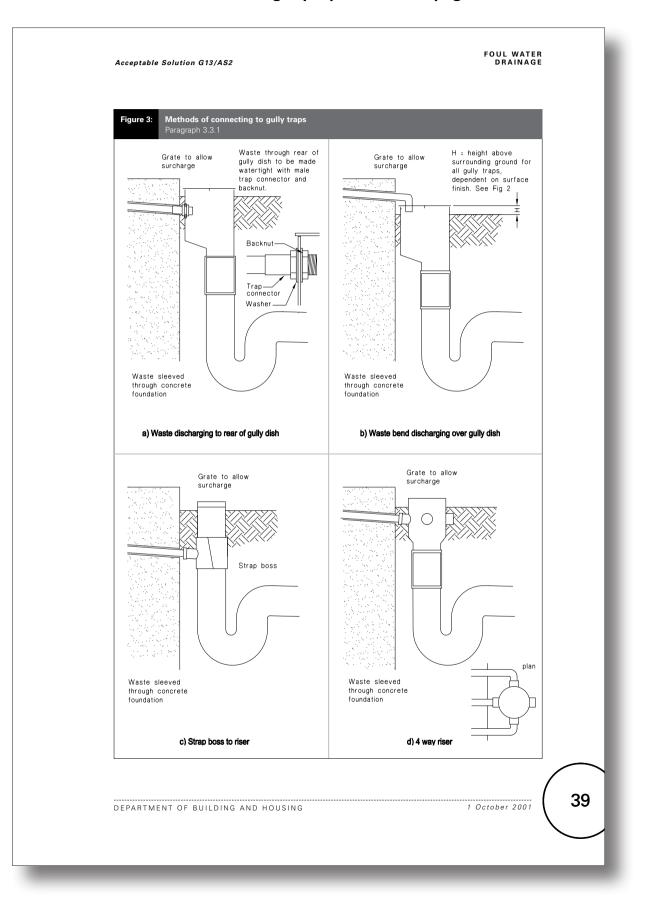
above the horizontal (see Figure 1). than: ection of drains h 3.2.1 COMMENT: -Flow ground/surface water Inspectio igure 2 (max) point (a) Graded connection Waste pipe Ground level (b) Inclined junction Ground Level (max) δ←Flow (c) Vertical connection xx November 2022

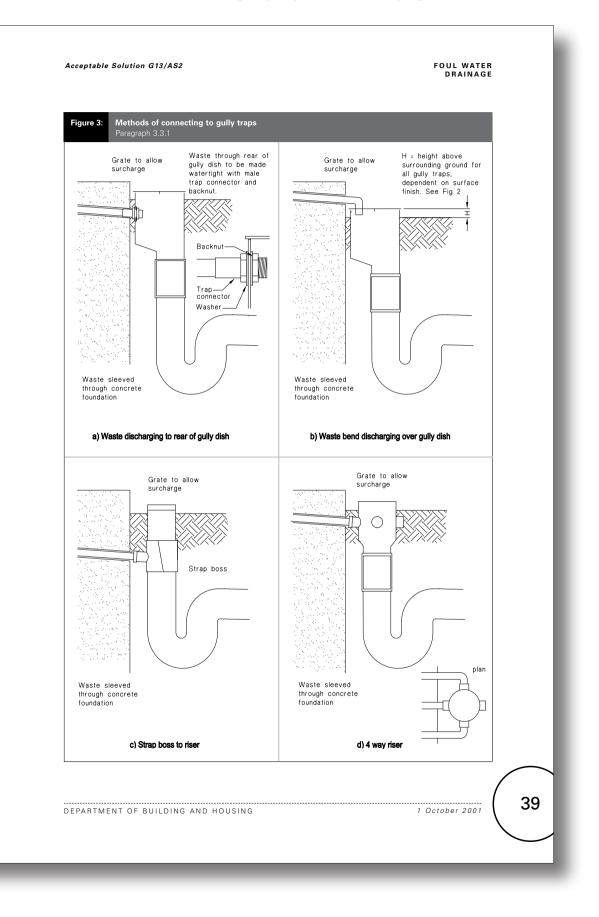
3.3.1 All gully traps shall be constructed to prevent the ingress of *surface water* and foreign bodies likely to cause a blockage, shall be located within the legal boundary of the land on which the *building* is erected, and shall have (see Figures 2 and 3):

a) The overflow level of the gully dish no less


i) 25 mm above paved surfaces, or

ii) 75 mm above unpaved surfaces,


It is imperative that the waste pipe connections to the gully trap remain watertight to prevent the ingress of


Amend 9 Nov 2020

Continued on page 40

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Current G13 Foul Water acceptable solutions and verification methods (Text to be amended shown in red)

FOUL WATER DRAINAGE

h) The top of the *water seal* no more than 600 mm below the top of the gully dish, and

COMMENT

Amend 9 Nov 2020

To permit the gully trap to be easily cleaned by hand.

- i) Adequate support from bedding and backfilling with
- i) concrete no less than 75 mm thick surrounding the entire gully dish and which is separated from the *building* foundation, where the gully trap is likely to be damaged, or
- ii) compacted bedding material complying with Paragraph 2.1.1, in other areas, and
- j) A minimum of 600 mm clear access space above the gully dish

3.3.2 In order to provide overflow relief for the drainage system, every *building* used for Housing shall be provided with at least one gully trap which shall:

- a) Be positioned so that the top of the gully dish is no less than 150 mm below the overflow level of the lowest sanitary fixture served by the drainage system,
- b) Have a grating that will allow surcharge,
- c) Be located in a visible position, and
- d) Be installed so that surcharge cannot enter into or under buildings.

COMMENT

Dian

(mm

80

100

150

40

Housing is a classified use defined in Clause A1 of the Amend 9 Building Code.

3.4 Grease traps

3.4.1 Grease traps shall be provided for any discharge pipe serving a sink(s) where the foul water discharges to a soak pit.

3.4.2 In *buildings* other than *Housing, grease* traps shall be provided where waste water is likely to convey grease.

Acceptable Solution G13/AS2

COMMENT

Housing is a classified use defined in Clause A1 of the Building Code.

3.4.3 The capacity of a grease trap shall be at least twice the capacity of all sanitary fixtures and sanitary appliances discharging to it, and in no case less than 100 litres as shown in Figure 4.

3.4.4 For restaurants and cafés, the capacity of the grease trap shall be at least 5 litres for each person for whom seating is provided, and in no case less than that required by Paragraph 3.4.3.

3.4.5 Grease traps located outside a building shall be configured as shown in Figure 4.

3.4.6 The top of the outlet junction shall be extended to finished ground level and fitted with a watertight rodding point access cover as shown in Figures 4 and 10

3.4.7 Other types of *grease trap* such as those that separate or digest grease must be approved by the network utility operator as required by G14/VM1 1.2.

3.5 Gradient of drains

practicable gradient.

3.5.3 The gradient of drainage pipes shall be not less than that required in Table 2 for the relevant discharge unit loading.

1:200

515

le 2:	Drain discha Paragraphs 3			d minim	um gradie	ents			
neter					Minimun	n gradien	t		
n)	1:20	1:40	1:60	1:80	1:100	1:120	1:140	1:160	1:180
	215	100	61	44	34	-	-	-	-
	515	255	205	149	122	104	-	-	-
	2920	1790	1310	1040	855	760	677	611	558

See Paragraph 5.2.2 for drains laid at gradients within shaded area

5 November 2020

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

Proposed amendments to G13 Foul Water acceptable solutions and verification methods (Proposed text in blue)

FOUL WATER DRAINAGE

- b) A grating that will allow surcharge,
- c) A minimum outlet pipe diameter of 100 mm,
- d) A water seal depth of at least 65 mm,
- e) At least one *discharge pipe* discharging to the gully trap to avoid water seal evaporation,
- f) Waste pipes that discharge to the gully trap arranged to permit easy cleaning of the gully trap,
- g) Waste pipe outlets located at least 20 mm above water seal level, and at least 20 mm below the grating,
- h) The top of the water seal no more than 600 mm below the top of the gully dish, and

COMMENT:

- To permit the gully trap to be easily cleaned by hand.
- i) Adequate support from bedding and backfilling with:
- i) concrete no less than 75 mm thick surrounding the entire gully dish and which is separated from the *building* foundation, where the gully trap is likely to be damaged or
- ii) compacted bedding material complying Amend 9 Nov 2020 with Paragraph 2.1.1, in other areas, and
 - i) A minimum of 600 mm clear access space above the gully dish.
 - **3.3.2** In order to provide overflow relief for the drainage system, every *building* used for Housing shall be provided with at least one gully trap which shall:
 - a) Be positioned so that the top of the gully dish is no less than 150 mm below the overflow level of the lowest sanitary fixture served by the drainage system,
 - b) Have a grating that will allow surcharge,
 - c) Be located in a visible position, and d) Be installed so that surcharge cannot enter into or under buildings.

COMMENT

xx November 2022

Housing is a classified use defined in Clause A1 of the Amend 9 Nov 2020 Building Code.

40

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

COMMENT Building Code.

- - - 3.4.5 Grease traps located outside a building shall be configured as shown in Figure 4.
 - 3.4.6 The top of the outlet junction shall be extended to finished ground level and fitted with a watertight rodding point access cover as shown in Figures 4 and 10.
 - 3.4.7 Other types of grease trap such as those that separate or digest grease must be approved by the network utility operator as required by G14/VM1 1.2.

3.5 Gradient of drains

3.5.1 Drains shall:

3.5.2 Drains shall be installed at the maximum practicable gradient.

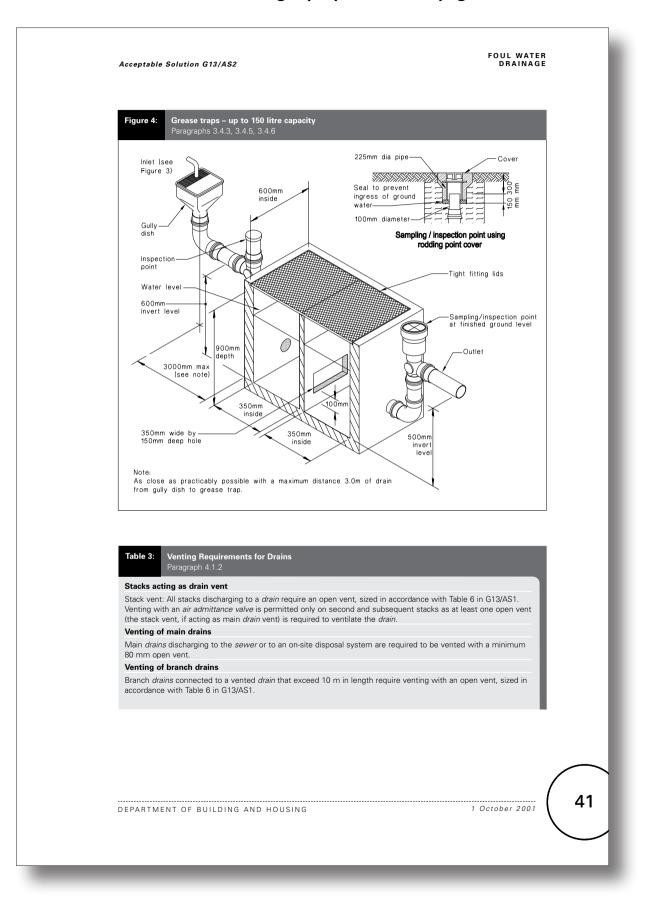
COMMENT:

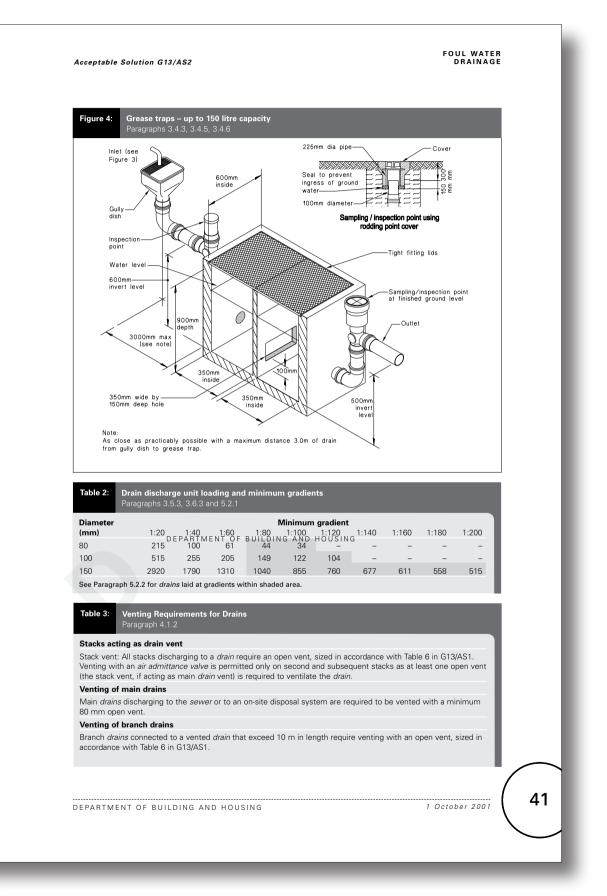
3.5.1 Drains shall: a) Be laid at an even grade, and b) Have no obstructions to flow. 3.5.2 Drains shall be installed at the maximum

Acceptable Solution G13/AS2

3.4 Grease traps

- **3.4.1** *Grease traps* shall be provided for any discharge pipe serving a sink(s) where the foul water discharges to a soak pit.
- 3.4.2 In buildings other than Housing, grease traps shall be provided where waste water is likely to convey grease.
- Housing is a classified use defined in Clause A1 of the


Amend 9 Nov 2020


- 3.4.3 The capacity of a grease trap shall be at least twice the capacity of all sanitary fixtures and sanitary appliances discharging to it, and in no case less than 100 litres as shown in Figure 4.
- 3.4.4 For restaurants and cafés, the capacity of the grease trap shall be at least 5 litres for each person for whom seating is provided, and in no case less than that required by Paragraph 3.4.3.

- a) Be laid at an even grade, and
- b) Have no obstructions to flow.

For example, a drainage pipe shall not be laid at a gradient of 1:80 if it can practicably be laid at a grade of 1:60.

3.5.3 The gradient of drainage pipes shall be not less than that required in Table 2 for the relevant discharge unit loading.

Proposed G13 Foul Water - No changes proposed to this page

FOUL WATER DRAINAGE

3.6 Diameter of drains

3.6.1 The *diameter* of a *drain* shall not decrease in size in the direction of flow

3.6.2 *Drains* shall have a *diameter* of not less than 100 mm, except that 80 mm is acceptable where the drain serves only waste water fixtures.

3.6.3 *Diameters* and gradients of *drains* shall be no less than those given in Table 2 for the calculated *discharge unit* loading determined from Table 2 of Acceptable Solution G13/AS1 "Sanitary Plumbing".

4.0 Drain Ventilation

4.1 Ventilation requirements

4.1.1 The drainage system shall be ventilated to allow a flow of air and to minimise the build up of foul air.

4.1.2 Every main *drain*, and every branch *drain* longer than 10 m, shall be ventilated in accordance with Table 3.

4.1.3 Ventilation shall be provided by a *drain* vent pipe located so that the length of drain upstream of the *drain* vent connection is less than 10 m (see Figure 5).

4.1.4 To allow for regular flushing of the drain vent connection, it shall be located downstream of, but not more than 10 m, from the discharge connection closest to the head of the drain (see Figures 5 (a) and 6).

COMMENT

The head of the *drain* is that point on the drainage system that is the furthermost from the outfall.

4.1.5 Any open *discharge stack vent* that is located within 10 m from the head of the drain may be used as a *drain* vent (see Figure 5 (b)).

4.2 Diameter of drain vent pipe

4.2.1 A main *drain* vent shall have a minimum diameter of 80 mm, and shall comply with termination requirements of Paragraph 5.7.3 of G13/AS1 "Sanitary Plumbing"

4.2.2 Branch drain vents shall be sized in accordance with Table 6 in G13/AS1.

5.0 Installation

5.1 Jointing

5.1.1 Rigid pipes shall have flexible joints to resist damage from differential settlement.

Amend 3 Sep 2010 5.1.2 Jointing for PVC-U pipes and fittings shall be in accordance with the methods described in AS/NZS 2032.

5.2 Construction

5.2.1 Drains shall be constructed to withstand the combination and frequency of loads likely to be placed upon them without collapse, undue damage or undue deflection (see Figure 7). In addition, adequate support needs to be provided to prevent gradients becoming less than those required by Table 2 as a result of:

a) Differential settlement, or

b) Deflection of an unsupported span. 5.2.2 Where *drains* are laid at gradients of 1:80 or less, verifiable levelling devices shall be used to ensure uniform and accurate gradients.

COMMENT Laser and dumpy levels are recommended devices.

5.3 Construction methods

5.3.1 Figure 7 gives acceptable methods for the bedding and backfilling of the drainage pipes listed in Table 1 except where:

- a) The trench is located within or above peat,
- b) Scouring of the trench is likely due to unstable soils,
- c) The horizontal separation between any building foundation and the underside of the pipe trench is less than that required by Paragraph 5.7.1, or

d) The cover H to the pipe is more than 2.5 m.

FOUL WATER DRAINAGE

3.6 Diameter of drains

3.6.1 The *diameter* of a *drain* shall not decrease in size in the direction of flow.

3.6.2 Drains shall have a diameter of not less than 100 mm, except that 80 mm is acceptable where the drain serves only waste water fixtures.

3.6.3 *Diameters* and gradients of *drains* shall be no less than those given in Table 2 for the calculated discharge unit loading determined from Table 2 of Acceptable Solution G13/AS1 "Sanitary Plumbing".

4.0 Drain Ventilation

4.1 Ventilation requirements

4.1.1 The drainage system shall be ventilated to allow a flow of air and to minimise the build up of foul air

4.1.2 Every main *drain*, and every branch *drain* longer than 10 m, shall be ventilated in accordance with Table 3.

4.1.3 Ventilation shall be provided by a *drain* vent pipe located so that the length of drain upstream of the *drain* vent connection is less than 10 m (see Figure 5).

4.1.4 To allow for regular flushing of the drain vent connection, it shall be located downstream of, but not more than 10 m, from the discharge connection closest to the head of the drain (see Figures 5 (a) and 6).

COMMENT

The head of the *drain* is that point on the drainage system that is the furthermost from the outfall.

4.1.5 Any open *discharge stack vent* that is located within 10 m from the head of the drain may be used as a *drain* vent (see Figure 5 (b)).

4.2 Diameter of drain vent pipe

4.2.1 A main drain vent shall have a minimum diameter of 80 mm, and shall comply with termination requirements of Paragraph 5.7.3 of G13/AS1 "Sanitary Plumbing"

4.2.2 Branch drain vents shall be sized in accordance with Table 6 in G13/AS1.

42 30 September 2010

30 September 2010

42

DEPARTMENT OF BUILDING AND HOUSING

Acceptable Solution G13/AS2

Amend 3 Sep 2010

Acceptable Solution G13/AS2

5.0 Installation

5.1 Jointing

5.1.1 Rigid pipes shall have flexible joints to resist damage from differential settlement. 5.1.2 Jointing for PVC-U pipes and fittings shall be in accordance with the methods described in AS/NZS 2032.

Amend 3 Sep 2010 Amend 3

5.2 Construction

5.2.1 Drains shall be constructed to withstand the combination and frequency of loads likely to be placed upon them without collapse, undue damage or undue deflection (see Figure 7). In addition, adequate support needs to be provided to prevent gradients becoming less than those required by Table 2 as a

a) Differential settlement, or

result of:

COMMENT

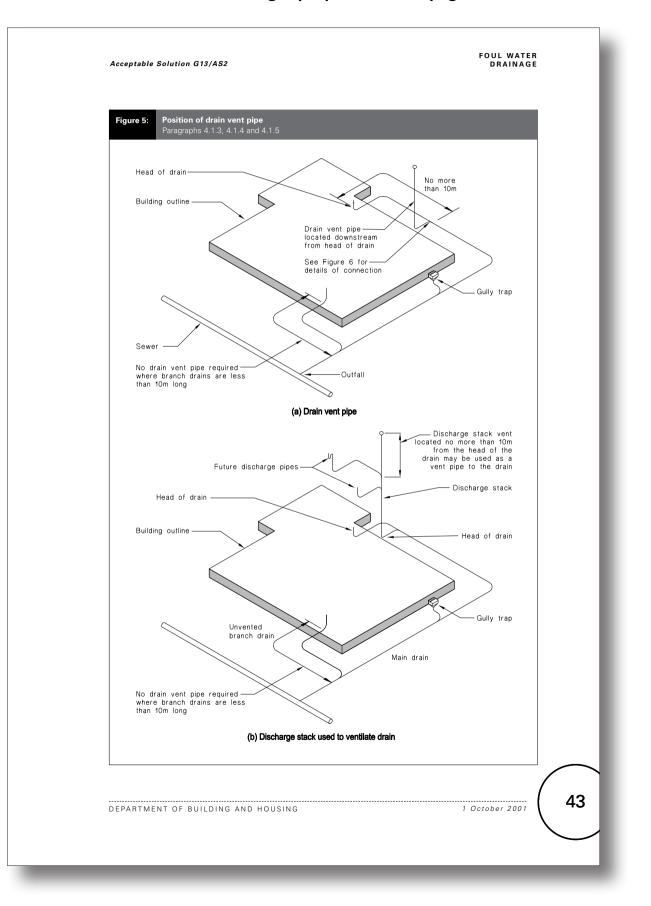
b) Deflection of an unsupported span.

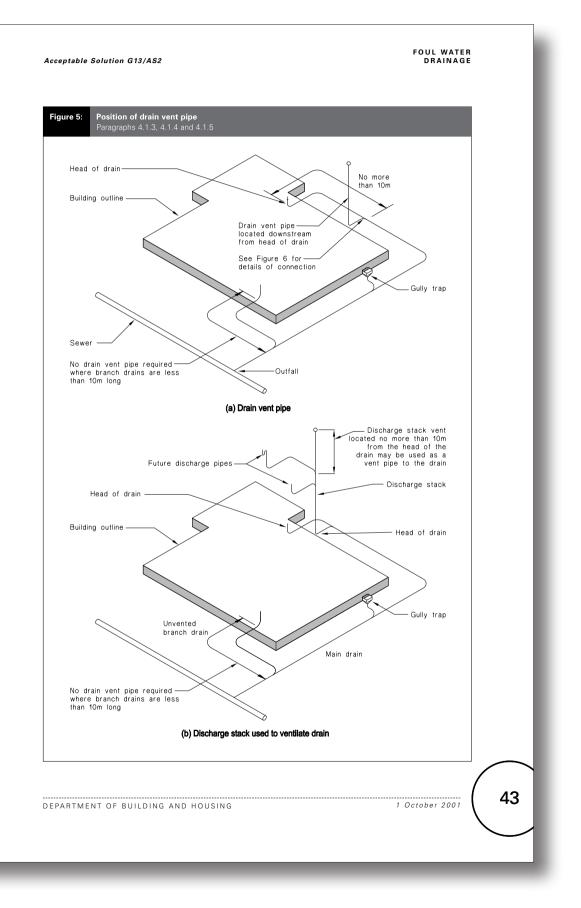
5.2.2 Where drains are laid at gradients of 1:80 or less, verifiable levelling devices shall be used to ensure uniform and accurate gradients.

Laser and dumpy levels are recommended devices

5.3 Construction methods

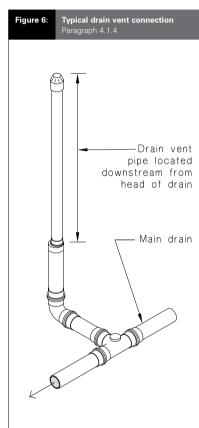
5.3.1 Figure 7 gives acceptable methods for the bedding and backfilling of the drainage pipes listed in Table 1 except where:


a) The trench is located within or above peat,


b) Scouring of the trench is likely due to unstable soils,

c) The horizontal separation between any building foundation and the underside of the pipe trench is less than that required by Paragraph 5.7.1, or

d) The cover H to the pipe is more than 2.5 m.


DEPARTMENT OF BUILDING AND HOUSING

Proposed G13 Foul Water - No changes proposed to this page

FOUL WATER DRAINAGE

5.3.2 Drains laid in ground described in Paragraph 5.3.1 shall be subject to specific desian.

5.4 Trench width

5.4.1 The width B of the trench shall be no less than the pipe *diameter* D plus 200 mm. The width of the trench at the top of the pipe shall be no more than 600 mm unless the pipes in the trench are covered with concrete, as shown in Figure 7 (c).

5.5 Placing and compacting

5.5.1 Base bedding (beneath the pipe) shall be placed and compacted before pipes are laid.

Acceptable Solution G13/AS2

5.5.2 Side bedding (along both sides of the pipe) and cover bedding (where used) up to 300 mm above the pipe, shall be compacted.

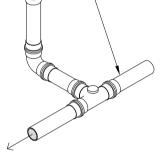
5.6 Proximity of trench to building

5.6.1 For light timber framed and concrete masonry *buildings* constructed to NZS 3604 or NZS 4229 in accordance with B1/AS1 pipe trenches which are open for no longer than 48 hours shall be located no closer than V to the underside of any *building* foundation, as shown in Figure 8. Where the trench is to remain open for periods longer than 48 hours the minimum horizontal separation shall increase to 3V in all ground except rock.

5.7 Access points

5.7.1 Except in accordance with Paragraphs 5.8 and 5.9, all *drains* shall be laid to allow easy access for maintenance and the clearance of blockages.

5.7.2 Drains shall be provided with access *points* to facilitate cleaning and the clearance of blockages. Such access points shall be constructed to prevent the ingress of ground water and tree roots


5.7.3 Access points may comprise access chambers, inspection chambers, rodding points or inspection points. Methods of access point construction are shown in Figures 9 to 12.

COMMENT:

Rodding points are preferred to inspection points in landscaped or sealed areas and within buildings

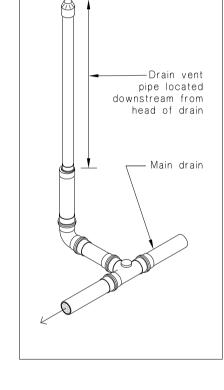
Typical drain vent con R -Drain vent pipe located downstream from head of drain - Main drain

FOUL WATER DRAINAGE

5.3.2 Drains laid in ground described in Paragraph 5.3.1 shall be subject to specific desian.

5.4 Trench width

14 February 2014


5.4.1 The width B of the trench shall be no less than the pipe diameter D plus 200 mm. The width of the trench at the top of the pipe shall be no more than 600 mm unless the pipes in the trench are covered with concrete, as shown in Figure 7 (c).

44

COMMENT:

44

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

14 February 2014

Acceptable Solution G13/AS2

5.5 Placing and compacting

5.5.1 Base bedding (beneath the pipe) shall be placed and compacted before pipes are laid.

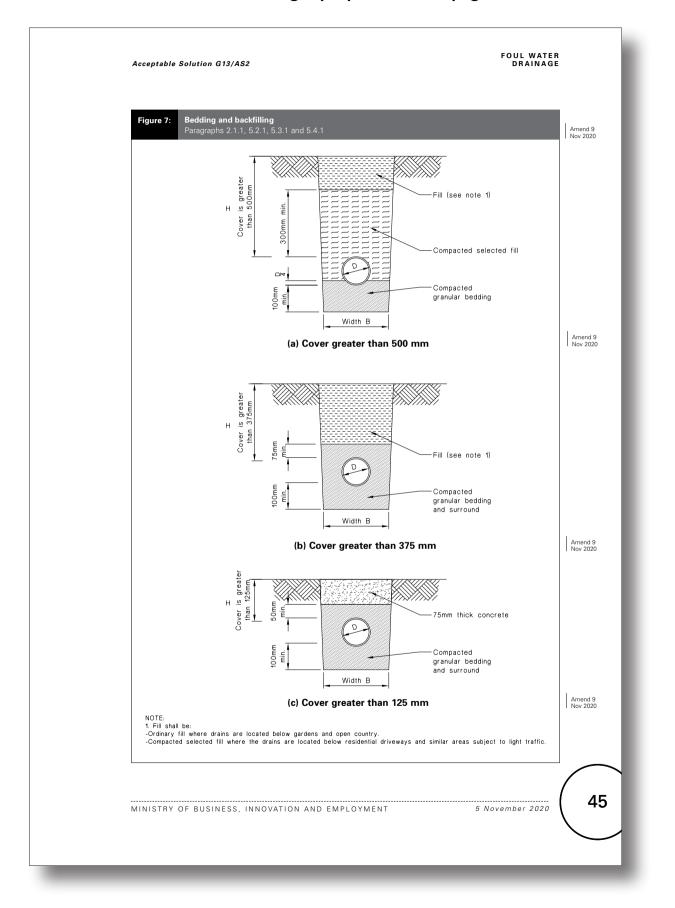
5.5.2 Side bedding (along both sides of the pipe) and cover bedding (where used) up to 300 mm above the pipe, shall be compacted.

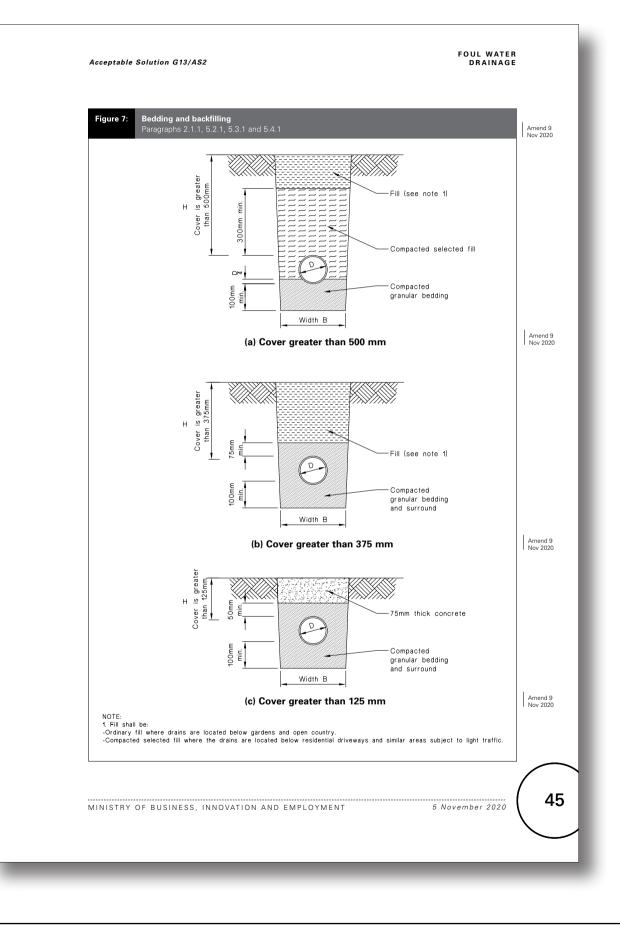
5.6 Proximity of trench to building

5.6.1 For light timber framed and concrete masonry *buildings* constructed to NZS 3604 or NZS 4229 in accordance with B1/AS1 pipe trenches which are open for no longer than 48 hours shall be located no closer than V to the underside of any building foundation, as shown in Figure 8. Where the trench is to remain open for periods longer than 48 hours the minimum horizontal separation shall increase to 3V in all ground except rock.

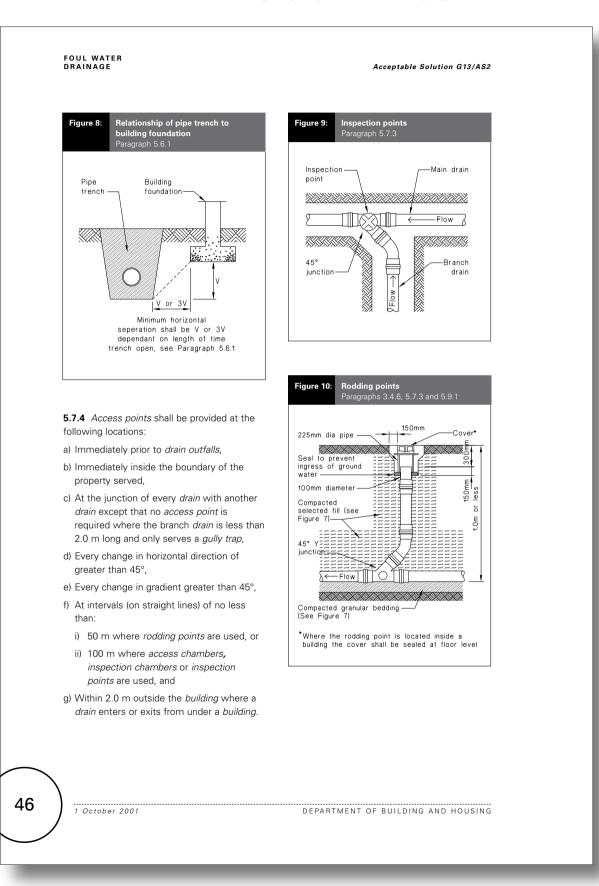
5.7 Access points

5.7.1 Except in accordance with Paragraphs 5.8 and 5.9. all *drains* shall be laid to allow easy access for maintenance and the clearance of blockages.

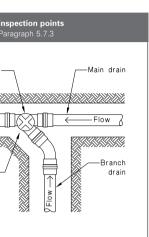

5.7.2 Drains shall be provided with access points to facilitate cleaning and the clearance of blockages. Such access points shall be constructed to prevent the ingress of ground water and tree roots.

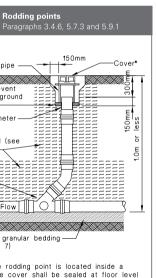

5.7.3 *Access points* may comprise *access* chambers, inspection chambers, rodding points or inspection points. Methods of access point construction are shown in Figures 9 to 12.

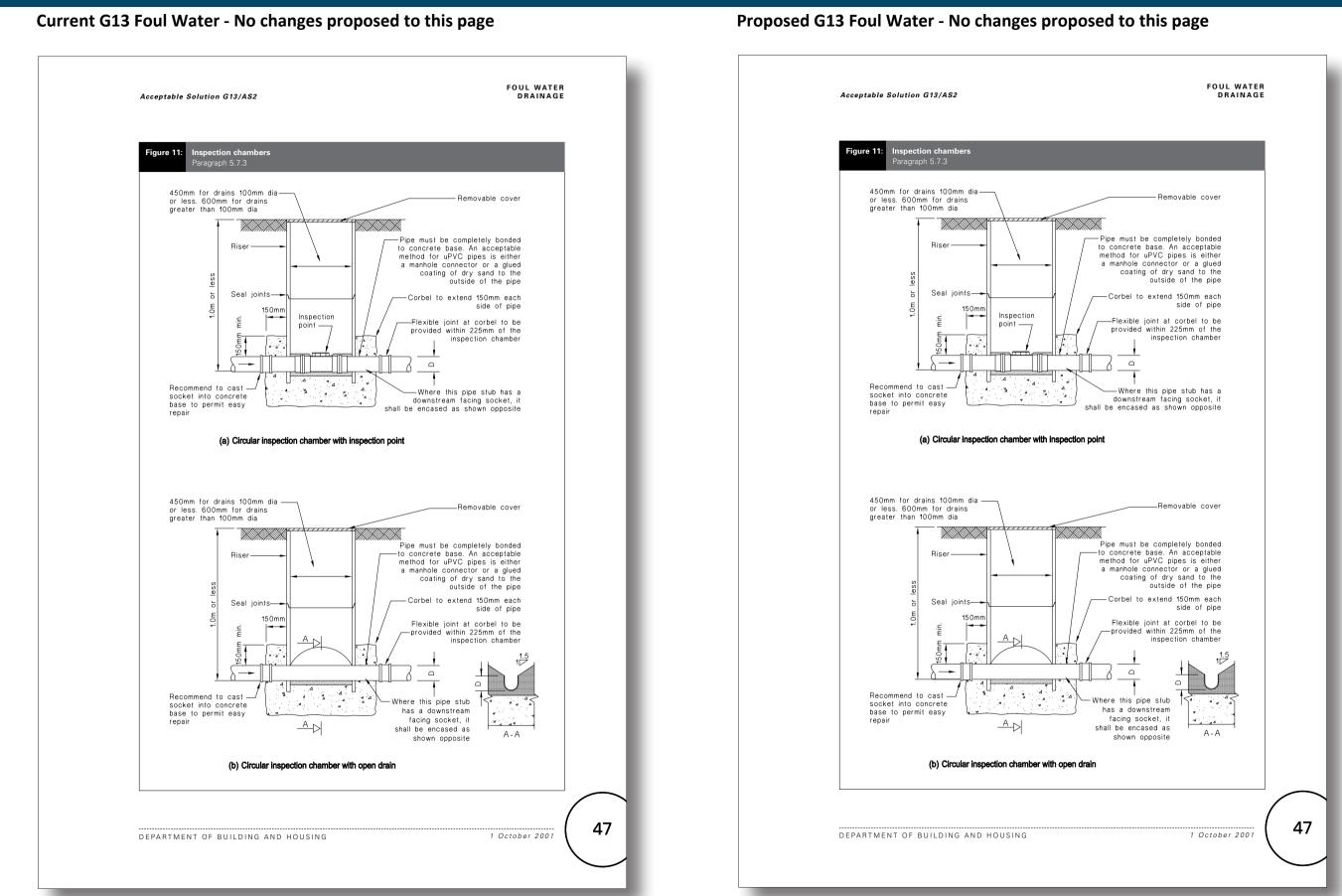
Rodding points are preferred to inspection points in landscaped or sealed areas and within buildings.

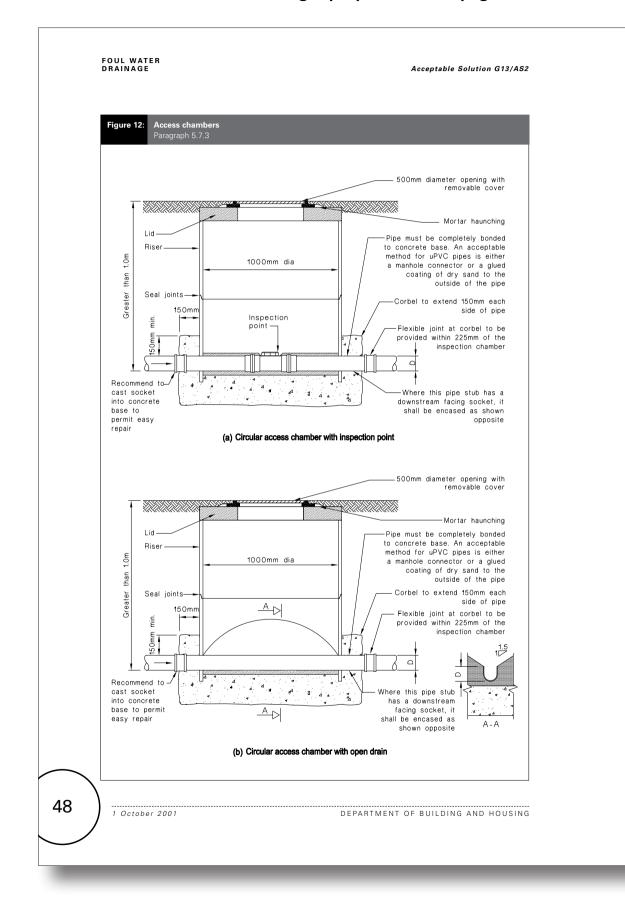

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

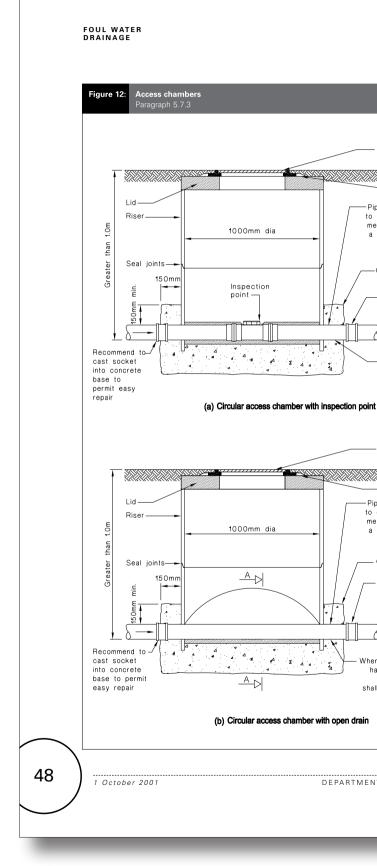
Amend 5 Feb 2014

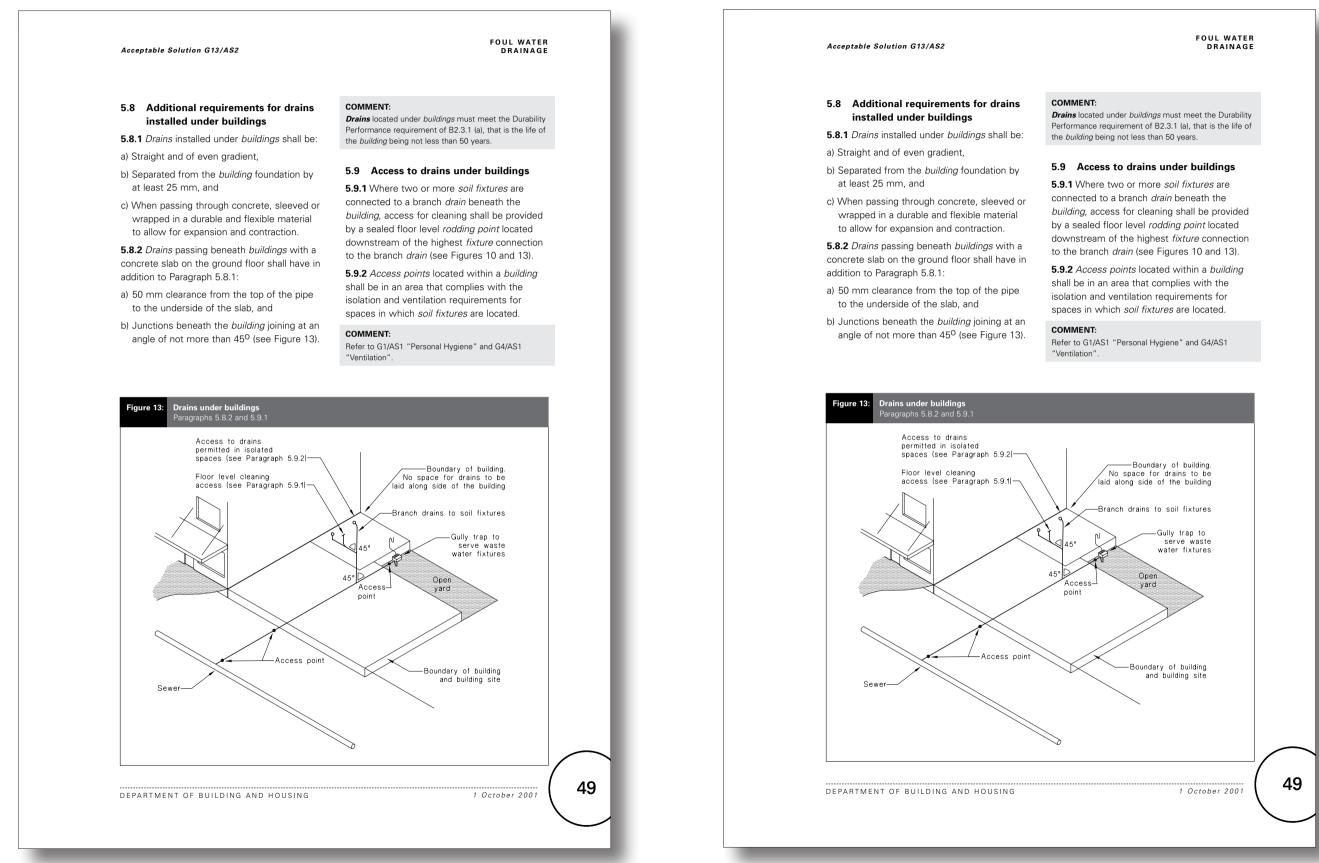


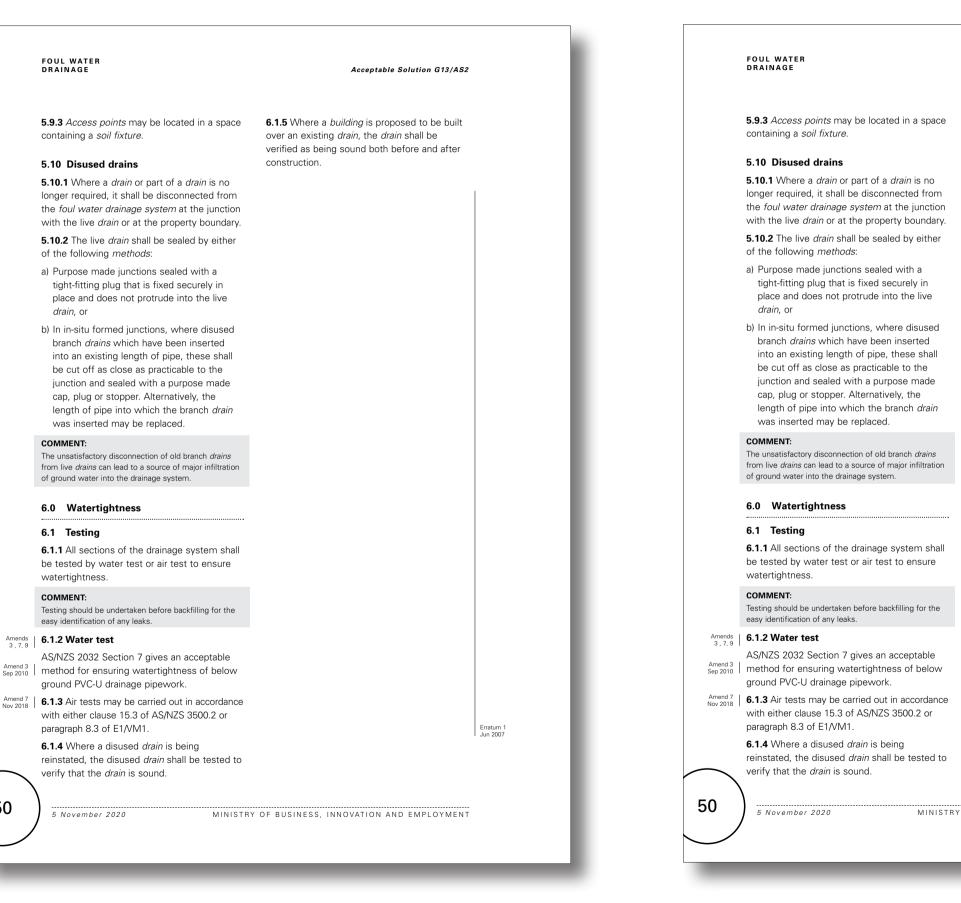

Proposed G13 Foul Water - No changes proposed to this page


FOUL WATER DRAINAGE	
Figure 8: Relationship of pipe trench to building foundation Paragraph 5.6.1	Figure 9:
Pipe Building foundation foundation v or 3V Winimum horizontal seperation shall be V or 3V dependant on length of time trench open, see Paragraph 5.6.1	Inspection point 2 2 45° junction
 5.7.4 Access points shall be provided at the following locations: a) Immediately prior to <i>drain outfalls</i>, b) Immediately inside the boundary of the property served, c) At the junction of every <i>drain</i> with another <i>drain</i> except that no <i>access point</i> is required where the branch <i>drain</i> is less than 2.0 m long and only serves a <i>gully trap</i>, d) Every change in horizontal direction of greater than 45°, e) Every change in gradient greater than 45°, f) At intervals (on straight lines) of no less than: i) 50 m where <i>rodding points</i> are used, or 	Figure 10: 225mm dia p Seal to prev- ingress of g water 100mm diame Compacted Selected fill Figure 7] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 ii) 100 m where access chambers, inspection chambers or inspection points are used, and g) Within 2.0 m outside the building where a drain enters or exits from under a building. 46 	DEPARTM


Acceptable Solution G13/AS2



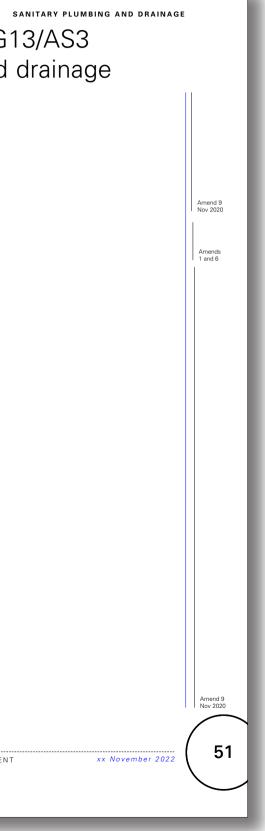

MENT OF BUILDING AND HOUSING



Acceptable Solution G13/AS2
Mortar haunching
— Pipe must be completely bonded to concrete base. An acceptable method for uPVC pipes is either a manhole connector or a glued coating of dry sand to the outside of the pipe
—Corbel to extend 150mm each side of pipe
Flexible joint at corbel to be provided within 225mm of the inspection chamber
Where this pipe stub has a downstream facing socket, it
shall be encased as shown opposite
point
500mm diameter opening with removable cover
Mortar haunching -Pipe must be completely bonded to concrete base. An acceptable method for uPVC pipes is either a manhole connector or a glued coating of dry sand to the outside of the pipe
— Corbel to extend 150mm each side of pipe
Flexible joint at corbel to be provided within 225mm of the inspection chamber
Where this pipe stub has a downstream facing socket, it shall be encased as shown opposite A-A
in
IENT OF BUILDING AND HOUSING

Proposed G13 Foul Water - No changes proposed to this page

50

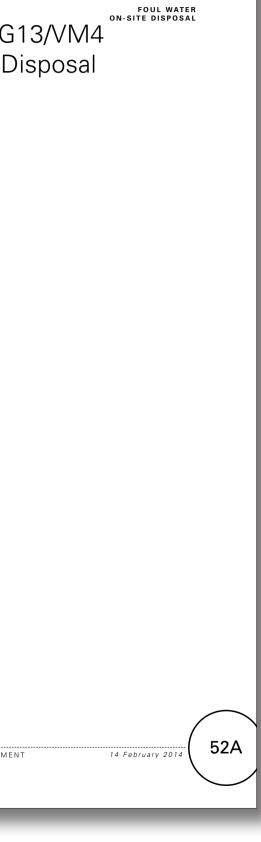

Acceptable Solution G13/AS2

6.1.5 Where a building is proposed to be built over an existing *drain*, the *drain* shall be verified as being sound both before and after

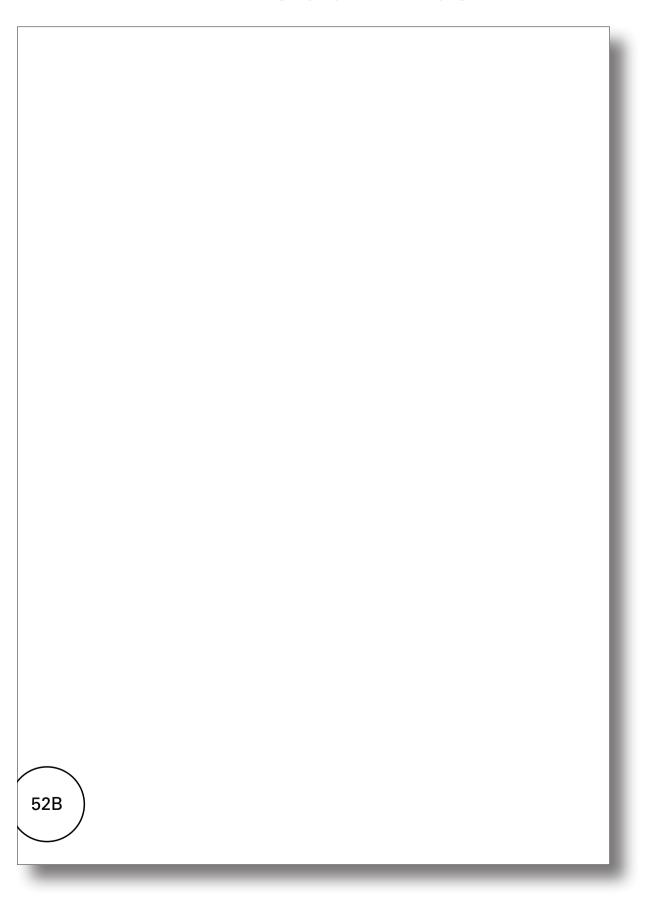
Erratum 1 Jun 2007

MINISTRY OF BUSINESS. INNOVATION AND EMPLOYMENT

Proposed amendments to G13 Foul Water acceptable solutions and **Current G13 Foul Water acceptable solutions and verification methods** (Text to be amended shown in red) verification methods (Proposed text in blue) Amend 1 Acceptable Solution G13/AS3 Acceptable Solution G13/AS3 SANITARY PLUMBING AND DRAINAGE Amend 1 Jun 2007 Acceptable Solution G13/AS3 Acceptable Solution G13/AS3 Amend 9 Nov 2020 Sanitary plumbing and drainage Amend 9 Nov 2020 Sanitary plumbing and drainage 1.0 AS/NZS 3500.2 4.9.1.3 Other installations 1 0 AS/NZS 3500 2 1.0.1 AS/NZS 3500.2, as modified by 1.0.1 AS/NZS 3500.2, as modified by or repairs or extensions to existing Paragraph 1.0.2, is an Acceptable Solution for nstallations or where the main and branch Paragraph 1.0.2, is an Acceptable Solution for Amend 3 Sep 2010 the design and installation of sanitary plumbing Amend 3 Sep 2010 drains are not DN 100 the entry level of the the design and installation of sanitary plumbing and drainage systems. and drainage systems. branch drain may be on grade. Amends 6 and 7 Amends 6 and 7 NOTE 1: Where sufficient height is available 1.0.2 Modifications to AS/NZS 3500.2 in existing installations, the provisions of Amend 6 Jan 2017 Amend 6 Jan 2017 1.0.2 Modifications to AS/NZS 3500.2 Clause 4.9.1.2 should be followed to avoid the Clause 2.2 Delete and replace with "Materials Amend 9 Nov 2020 Clause 2.2 Delete and replace with "Materials potential for blockages." and products shall comply with NZBC Clause and products shall comply with NZBC Clause B2 Durability, G13/AS1 Paragraph 2.0 Clause 5.6 Delete and replace with "Drains B2 Durability and G13/AS1 Paragraph 2.0 in other than stable ground shall be subject to Materials for sanitary *plumbing systems* and Materials". Amends 1 and 6 G13/AS2 Paragraph 2.0 Materials for foul water specific design. Clause 3.19 Delete Clause drainage systems" Clause 6.6.2.4 Delete and replace with Clause 4.4 Replace "inspection shafts" with Clause 3.19 Delete Clause. "6.6.2.4 Junctions installed at grade "access point" in this Clause. Clause 4.4 Replace "inspection shafts" with 6.6.2.4.1 General Clause 4.6.6 This applies only to Housing. "access point" in this Clause. Discharge pipes shall be joined to each other COMMENT: Clause 4.6.6 This applies only to Housing. by means of a 45° junction. Where unequal Housing is a classified use defined in Clause A1 of the size junctions are used, the invert of the COMMENT: Building Code branch pipe shall be 10 mm higher than the Housing is a classified use defined in Clause A1 of the Clause 4.9.1 Delete and replace with Building Code soffit of the pipe to which it connects. "4 9.1 Drains installed at grade 6.6.2.4.2 New installations 4.9.1 General Where a junction is used to make the The connection of any drain to a graded connection of a DN 100 branch pipe to a drain shall be by means of a junction with an common discharge pipe of the same size, the upstream angle not greater than 45° and shall entry level of the branch pipe shall be elevated conform to the following: at an incline of not less than 15° above the horizontal. (a) Double 45 junctions shall not be used. NOTE 1: See Figure 4.9.1(a) for a typical (b) Where unequal junctions are used, the example invert of the branch drain shall be at least 10 mm higher than the soffit of the drain to NOTE 2: Positioning the junction a minimum which it connects. of 15° above horizontal removes the probability of the partial backwash of a discharge into 4.9.1.2 New installations the branch causing stranding that can lead to Where a junction is used to make the blockages in the drain. connection of a DN 100 branch drain to a mair 6.6.2.4.3 Other installations drain of the same size, the entry level of the branch drain shall be elevated at an incline of For repairs or extensions to existing not less than 15° above the horizontal. installations the entry level of the branch pipe NOTE 1: See Figure 4.9.1(a) for a typical may be on grade example. NOTE 1: Where sufficient height is available existing installations, the provisions of Clause NOTE 2: Positioning the junction a minimum 6.6.2.4.1 should be followed to avoid the of 15° above horizontal removes the probability Amend 9 Nov 2020 potential for blockages." of the partial backwash of a discharge into the branch causing stranding that can lead to blockages in the drain. 51 MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 5 November 2020


rrent G13 Foul Water acceptable solutions ext to be amended shown in red)	and verification methods	Proposed amendments to G13 Foul Water ac verification methods (Proposed text in blue)
SANITARY PLUMBING AND DRAINAGE	Acceptable Solution G13/AS3	SANITARY PLUMBING AND DRAINAGE
 Arverds 1.5.1 Clause 6.6.2.6 Delete and replace with Solate Argon one of a stack to a graded pipe shall be in accordance with Clause 6.8.3." Clause 6.8.3 (a) Delete and replace with "(a) a 45° junction installed on grade in accordance with Clause 6.0.2 4 and a bend at the base of the stack in accordance with "PVC-U piping systems shall be installed in accordance with As/NZS 2032 and the requirements of this Standard." Section 14 Delete section. 		Amend 9 Mov 200 Section 14 Delete section.
2 5 November 2020 MINISTRY OF BUSINESS,	INNOVATION AND EMPLOYMENT	52 XX November 2022 MINISTRY OF BUSINESS

cceptable solutions and


Acceptable Solution G13/AS3

INNOVATION AND EMPLOYMENT

	Verification Method G13/VM4 Verification Method G13/VM4		Verification Method G
	Foul Water: On-Site Disposal		Foul Water: On-Site D
	1.0 General		1.0 General
	1.1 Scope		1.1 Scope
	1.1.1 This document describes the design methods for systems used for the collection, storage, treatment and disposal of <i>foul water</i> .		1.1.1 This document describes the design methods for systems used for the collection, storage, treatment and disposal of <i>foul water</i> .
	1.1.2 A design method and construction details given in sections 5.1 to 5.5 and 6.1 to 6.2 of AS/NZS 1547 (and the appendices		1.1.2 A design method and construction details given in sections 5.1 to 5.5 and 6.1 to 6.2 of AS/NZS 1547 (and the appendices
Amend 5 eb 2014	referred to in these sections), for the treatment of domestic <i>foul water</i> for flow rates up to a maximum 14,000 litres/week	Amend 5 Feb 2014	referred to in these sections), for the treatment of domestic <i>foul water</i> for flow rates up to a maximum 14,000 litres/week
Amend 2 Jun 2007	from a population equivalent of up to 10 persons, may be verified as satisfying the performance criteria of G13 Foul Water.	Amend 2 Jun 2007	from a population equivalent of up to 10 persons, may be verified as satisfying the performance criteria of G13 Foul Water.
	MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 14 February 2014		MINISTRY OF BUSINESS, INNOVATION AND EMPLOYME

Proposed G13 Foul Water - No changes proposed to this page

52B

Proposed G13 Foul Water - No changes proposed to this page

Nov 2020	Index G13/VM1/VM2 & AS1/AS2/A All references to Verification Methods and Acceptable Solutions are preceded by VM or A
	respectively.
	Access chambers see Drains, maintenance access
	Access points see Drains, maintenance access
	Basins
	Baths
	Bidets
	Buildings
	three storey buildings AS1 Figure 7
	Cleaners' sinksAS1 Table 2
	Discharge pipes
	5.5, 5.7.3, Figures 6 and 11, Table 4 branch discharge pipes
	diameters
	fixture discharge pipes AS1 Figures 7 and 8, Tables 2 and 4
	gradient
	waste pipes
	combined waste pipes
	Discharge stacks
	5.6, Figures 7 to 9, Tables 3, 4 and 6
	see also Discharge pipes, Pipes
	discharge stack vents
	5.6.1, 5.6.3, Figures 7 and 8, Table 6, AS2 4.1.5, Figure 5
	Discharge units
	Dishwashing machine
1	Drainage system
Amend 9 Nov 2020	3.1.1, 3.3.2, 4.1.1, 5.10.1, AS3 1.0
	Drains
	bedding and backfilling AS2 Figure 7
	acceptable materials
	bends
	connections
	construction
	diameter
	disused drains
	gradient
	installation
	MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT 5 November 25 Nove

Index G13/VM1/VM2/VM4 & AS1/AS2/AS3 Amend 9 Nov 2220 Index G13/VM1/VM2/VM4 & AS1/AS2/AS3

All references to Verification Methods and Acceptable Solutions are preceded by VM or AS respectively.

	Access chambers see Drains, maint
	Access points see Drains, maint
I	Basins
I	Baths
I	BidetsAS
I	Buildings three storey buildings
	Cleaners' sinks
I	Discharge pipes AS1 4.5.1, 4
	5.5, 5.7.3, Figures 6 a
	branch discharge pipes
I	Discharge stacks
I	Discharge unitsAS1 Table
I	Dishwashing machineAS1 3
Amend 9	Drainage system
Nov 2020	Drains
	connections
	drain vent pipes
-	VINISTRY OF BUSINESS, INNOVATION AND EMPLOYMEI

MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT

53

FOUL WATER

ntenance access

ntenance access

3.2, 5.5.2, Table 2

.... AS1 Table 2

S1 5.5.2, Table 2

. . AS1 Figure 7 ... AS1 Table 2

4.5.2, 4.6, 5.1.1, and 11, Table 4 . . AS1 Figure 7 e 6, **AS2** 3.6, 4.2 , Tables 2 and 4

AS2 3.5, Table 2

. . AS1 Figure 5 gures 5, 6 and 8

4.5.1, 4.7, 5.3.1, ables 3, 4 and 6 arge pipes, Pipes 7.1, 5.2.1, 5.3.1, 7 and 8, Table 6,

2 4.1.5, Figure 5 e 2, **AS2** Table 2

3.3.2 a), Table 2

5.7.4, **AS2** 1.0.2, 5.10.1, **AS3** 1.0

1 4.2.2, **AS2** 1.0

. . AS2 Figure 7 AS2 Table 1 **AS2** 3.1 2 3.2.1, Figure 1 **S2** 5.2, Figure 7 **AS2** 3.6, Table 2 **AS2** 5.10

Figure 3, Table 3 **AS2** 3.5, Table 2

. . **AS2** 5.0, 5.5

5 November 2020

53

Proposed G13 Foul Water - No changes proposed to this page

	FOUL WATER	Index G13/VM1/VM2 & AS1/AS2/AS3/AS
	Drains (continued)	
	jointing.	
	junctions	
	maintenance access	AS2 5.7
	access chambers	9
	access points	
	inspection chambers	-
	inspection points	
	rodding points	
	materials	
	proximity to buildings	
	under buildings	
	ventilation AS2 4.0, Figure	
	watertightness	AS2 6.1.1
	Drinking fountains	AS1 Table 2
	Floor outlets	AS1 3 4
	Grease traps	
	Gully trapsAS1 Figures 5 and 7, AS2 3.3	, Figures 2 and 3
	constructionAS	
	pipe diameters	AS2 3.3.1
	overflow relief	AS2 3.3.2
	Inspection chambers see Drains, mai	intenance access
	Inspection points see Drains, mai	intenance access
	Kitchen sinks	Figure 2, Table 2
	Laundry tubs AS1 2.3.2,	Figure 2, Table 2
	Odours foul air	AS1 3.1.1
1	On-site disposal	
	scope	
	Pipes see Discharge pipes, D	
	vent pır jointing methods	bes, Waste pipes
	materials	
	supports	
	thermal movement	
	watertightness	AS1 7.0
I		
	Restaurants.	AS2 3.4.4
	Rodding points see Drains, mai	intenance access
`	3F	
١	5 November 2020 MINISTRY OF B	USINESS, INNOVATION AND EMPLOYMEN
J		

	FOUL WATER Index G	13
	Drains (continued) jointing. AS2 junctions AS2 maintenance access AS2 access chambers AS2 Figur access points AS2 5.7, Figures 9 t inspection chambers AS2 5.7, Figures 9 t inspection points AS2 5.7, Figures 9 t location AS2 5.7, Figures 9 t rodding points AS2 5.7, Figures 9 t materials AS2 5.7, Figures 9 t proximity to buildings AS2 5.7, Figures 9 t under buildings AS2 5.7, Figures 9 t ventilation AS2 5.7, Figures 9 t access points AS2 5.7, Figures 9 t inspection points AS2 5.7, Figures 9 t location AS2 5.7, Figures 9 t rodding points AS2 5.7, Figures 9 t materials AS2 5.0, Figures 9 t under buildings AS2 5.8, 5.9, Figures 9 t ventilation AS2 4.0, Figures 4 to 6, Tal watertightness AS2 6	2 ee io io io io io io io io io io io io io
	Drinking fountainsAS1 Tal	зI
	Floor outlets	1
	Grease traps	
	Gully traps. AS1 Figures 5 and 7, AS2 3.3, Figures 2 a construction AS2 3.3.1, Figures 2 pipe diameters AS2 3.3.1, Figures 2 overflow relief AS2 3.3.1	ur 3.
	Inspection chambers see Drains, maintenance ac	С
	Inspection points see Drains, maintenance ac	С
	Kitchen sinks	зI
	Laundry tubs	ol
	foul air AS1 3	3.
Amend 2 Jun 2007	On-site disposal	
	Pipes	pip
Amends	jointing methods	bl bl 1
3 and 9	Restaurants AS2	2
\frown	Rodding points	
54	5 November 2020 MINISTRY OF BUSINESS, IN	11

G13/VM1/VM2 & AS1/AS2/AS3/AS3

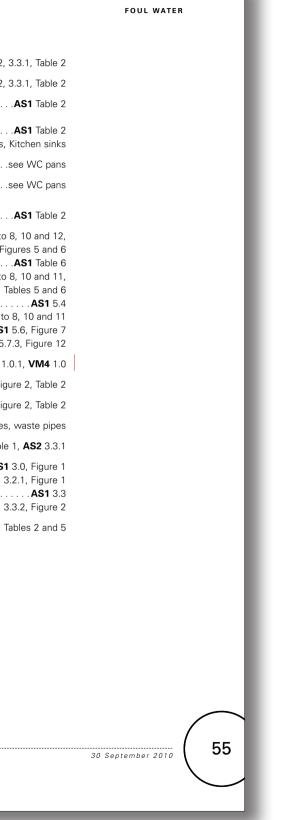
2 5.1 **2** 3.2 **2** 5.7 re 12 to 12 re 11 ure 9 5.7.4 re 10 ole 1 ure 8 re 13 ole 3 5.1.1 ole 2 **1** 3.4 **2** 3.4 3.4.4 nd 3 ure 4 3.3.1 3.3.2 cess cess ole 2 ole 2 3.1.1 **1**.0 **1** 1.1 acks, pipes 5.1.1 ole 1 ble 7 **1** 6.3 **1** 7.0

3.4.4

ccess

NNOVATION AND EMPLOYMENT

Proposed G13 Foul Water - No changes proposed to this page


Index G13/VM1/VM2 & AS1/AS2/AS3

	Index G13/VM1/VM2 & AS1/AS2/AS3	FOUL WA
	Sanitary appliances	
	Sanitary fixtures	
	ShowersAS1 Table 2	
	SinksAS1 Table 2 see also Basins, Cleaners' sinks, Kitchen sinks	
	Soil fixturessee WC pans	
	Toilets	
Amend 3 Sep 2010	 UrinalsAS1 Table 2	
	Vent pipes	
	Table 5, AS2 Figures 5 and 6	
	diameters	
	Tables 5 and 6 gradient	
	installation	
	relief vent pipes	
	terminationsAS1 5.7.3, Figure 12	
	Verification method VM1 1.0.1, VM2 1.0.1	
	Washing machines	
	Waste disposal units AS1 Figure 2, Table 2	
	Waste pipes see Discharge pipes, waste pipes	
	Water seals	
	Water traps AS1 3.0, Figure 1 dimensions	
	WC pans AS1 3.2.1, Figures 1 and 6, Tables 2 and 5	

	Sanitary appliances
	Sanitary fixturesAS1 1.0.2,
	Showers
	Sinks
	see also Basins, Cleaners' sinks,
	Soil fixtures
Amend 3	Toilets
Sep 2010	Urinals
	Vent pipes
	diameters fixture vent pipes AS1 5.2, Figures 5 to T
	gradient
	Verification method VM1 1.0.1, VM2 1.
	Washing machines AS1 Fig
	Waste disposal units AS1 Fig
	Waste pipes see Discharge pipes
	Water seals
	Water traps
	multiple outlets
	WC pans AS1 3.2.1, Figures 1 and 6, T

DEPARTMENT OF BUILDING AND HOUSING

55

