# Appendix E Economic Modelling assumptions

# 1. Scope

This 'Assumptions book' presents the key assumptions used in the NZ Battery project's economic modelling, as at the cover date. It covers four areas:

- An **overview of NZ battery economic modelling**, which provides the context for and purpose of our assumptions, in section 2
- Our **inflow assumptions** for hydro, wind and solar, are critical as these drive the dry year problem, in section 3
- Our baseline **economic modelling assumptions**, covering everything other than inflows and the NZ Battery Options themselves, in four parts:
  - Common modelling assumptions in section 4
  - Demand-side assumptions in section 5
  - Supply-side generation assumption in section 6 (with accompanying long tables of generation stacks in section 14 at the end of this document)
  - Transmission assumptions in section 7
- Our NZ Battery options in sections 8 to 133.

This Assumptions Book focuses on what the assumptions are, rather than the rationale for them. That is for brevity and because in many cases the rationale for the assumptions have been well versed within the NZ Battery Project. In some cases however, where assumptions have been introduced or detailed recently, rationales are included.

The tables distinguish with colour between 'raw' assumptions and derived assumptions, e.g.

|                        |        | 2021 | 2035             | 2050 | 2065               |
|------------------------|--------|------|------------------|------|--------------------|
| Growth in Base ex NZAS | % p.a. |      | 0.5%             | 0.8% | 0.6%               |
| Base excluding NZAS    | TWh    | 37.3 | 40.0             | 45.1 | 49.3               |
|                        |        |      | – Raw<br>nptions |      | Derived<br>options |

Table 10: Sample table: Base electricity demand assumptions

# 2. Economic modelling approach

The fundamental purpose of the economic modelling is to:

- Explore whether a particular NZ Battery option could work operationally within the electricity system over timeframes of hours to years (with operation at shorter timeframes being considered, where necessary, separately through detailed power systems analysis)
- The economic benefit that an NZ Battery option could provide, relative to a counterfactual without NZ Battery. To do this, we use exactly the same assumptions for the NZ Battery run as for the counterfactual, apart of course from assuming the NZ Battery option itself in the former.
- Understand how an NZ Battery would integrate with the market and supporting work on resilience and power system integration.

To achieve these aims we engaged two mutually supporting and methodologically independent modelling efforts:

- John Culy's energy model
- Stochastic Dual Dimension Programming (SDDP) modelling

## 2.1 Culy modelling

The Culy model determines the most economic mix of generation in a particular study year, with an optimisation based on plant gross margins. The plant gross margin is the spot market revenue less the SRMC. The revenue is derived from the full simulation model by week and time zone averaged over inflow years. The plant gross margin is calculated for actual new plant and for a notional very small new plant where none is built yet, to determine the capacity of each plant type built. A manual iterative approach is used. This involves adding new capacity of each type (geothermal, wind, solar, batteries and green peakers) until each new plant just covers its fixed operating costs and achieves a normal return on the capital invested. This also adjusts the mix of wind/solar between regions to take advantage of supply diversity and regional marginal loss differentials. A new entry equilibrium is achieved when each type of available new technology in each region is revenue adequate.

## 2.2 SDDP modelling

The SDDP model is considered by many in the industry (in New Zealand and overseas) as the 'gold standard' approach to economic-based grid modelling of electricity systems with a significant hydro component.

SDDP is the name of the algorithm, but also the name of a specific model developed, maintained, supported and licenced by PSR49, that uses that algorithm. We are using the PSR SDDP model. PSR partner the SDDP model with a generation expansion model named OptGen. For brevity, we use the term SDDP in this document to cover both the OptGen and SDDP models being used together. Transpower has developed the New Zealand version of the model over decades with PSR (and Tom Halliburton) and achieved widespread industry and Commerce Commission regulatory acceptance of its application for grid investment decisions.

<sup>49</sup> www.psr-inc.com

We have engaged Brian Moore through Jacobs (initially through EY) to conduct the SDDP runs, supported by Tom Halliburton on expert review, and initially supported by Andrew Sykes of Transpower, who kindly provided a starter-set of SDDP databases, including a full transmission grid model.

The SDDP model simulates system operating costs for a given plant mix, with the objective of finding the least cost generation dispatch. Therefore SDDP takes into account only variable costs, including fuel, carbon charges, variable operation and maintenance costs, the cost of deficits and some penalty costs for the violation of operating constraints. An optimal plant mix is determined by the companion model OptGen. The objective of OptGen is to find the lowest total cost of system operation, including both variable costs and fixed costs, including capital charges and fixed operating and maintenance costs. OptGen uses an iterative search process testing various combinations of new plant to determine the optimal development program of new plant over the planning period. OptGen calculates the total fixed costs incurred for each development program, and solves the corresponding SDDP case to determine the total variable cost of that program.

### 2.3 Synergistic modelling approaches

Our twin modelling approaches have been deliberately chosen as mutually supporting and methodologically independent modelling efforts, each with their own advantages, and capable of providing assurance of each other's results.

Culy's model is much faster to run than SDDP, and so can be used to explore multiple options, for example the benefits of different combinations of storage (TWh) and capacity (MW) sizes of pumped hydro systems.

The SDDP model is much more granular and hence slower to run, so we have to target its use carefully for key scenarios, but it provides greater granularity. Importantly, as water values will be critical to how a future 100% renewable New Zealand electricity system runs, and the SDDP model calculates them using a best-practice and forward looking algorithm, we can use the SDDP model to support the water value assumptions used in Culy's model. This is critical, as the value of stored energy to the future system with mass intermittent generation could be materially different to the value of stored energy today. The SDDP model can also determine transmission constraints and hence where, what and when transmission upgrades may be appropriate (and is used to support Transpower's NZ Battery project power system analysis as well as the economic modelling). The SDDP model represents the operation of hydro plant in a river chain system in detail including the effect of each plant's head pond and water travel times down the river system.

|                                  | Culy                                                                                         | SDDP                                                                                                                                   |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Focus                            | Electricity sector economic model                                                            |                                                                                                                                        |  |  |
| Spatial resolution               | Islands with regions for wind and solar, and HVDC link                                       | To regional and substation level                                                                                                       |  |  |
| Temporal resolution              | Weekly with intra-week duration<br>curves, modelled as typical days with<br>hours resolution | Can be varied, down to hourly                                                                                                          |  |  |
| Grid model                       | HVDC only, with losses                                                                       | Full transmission network including<br>limited security-constrained dispatch.<br>Losses modelled on HVDC but not<br>explicitly on HVAC |  |  |
| Hydro / pumped<br>hydro dispatch | Based on assumed<br>water values                                                             | Based on dynamically calculated water values                                                                                           |  |  |
| Prices                           | Cost-based assuming perfect competition                                                      |                                                                                                                                        |  |  |

#### Table 11: Comparison of Culy and SDDP models as used

## 2.4 Modelling strengths and limitations

Economic models are powerful tools in gaining insight into complex interactions and interrelationships, especially those open to quantification and that are beyond past experience. This is very much the case here, given the possibilities of:

- Unprecedented amounts of intermittent generation
- Significant reduction in controllable thermal generation
- Large storage schemes
- Different optimal operating regimes for our hydro resource.

But in considering the outputs of such models, we need to bear in mind some limitations.

Both models assume, in effect:

- Perfect competition
- Perfect foresight by investors on everything except inflows, for which they have perfect foresight on probability distributions
- Risk neutrality by investors.

They assume also that, in the representative year considered, wind, solar and green peaker cost are constant, i.e. that the 1000'th MW costs the same as the first MW. This is a deliberate modelling simplification of a reality where an upwards-sloping cost curve is likely, as wind and solar generation shifts to less favourable sites, or as different technologies or increasingly expensive fuel sources are needed for increasing quantities of green peakers. The results need to be considered in this light.

Both models are cost-based so:

- Output prices are likely to be an underestimate market prices
- Output price forecasts from them are less certain
- Output price volatility forecasts are even less certain.

Both models predict possible futures, but are silent on how we might get there from a regulatory or market design perspective.

As with all models, comparative results are more robust that absolute results. Our economic modelling programme is focused on comparative results, especially the gross incremental economic value of adding an NZ Battery to the system, all other assumptions equal.

# 3. Inflow assumptions

We use the term 'inflow' for hydro inflows, converted to energy production (GWh) terms assuming the modern hydro fleet, as is conventional. We use the term 'inflow' also to cover wind and solar 'inflows' of wind energy or irradiance, converted to energy production terms, per MW of plant installed.

Using historical inflows at high resolution (daily for hydro, hourly for wind and solar) ensures that we have the best available view of the complexity of hydro, wind and solar interactions.

## 3.1 Hydro

We used the Hydrological Modelling Dataset from the Electricity Authority, including the 2021 update. This provides generation-adjusted inflows by catchment by day back to 1932.

While the climate probably has changed since the 1930s, and will change further going forward, we used the full range of inflow sequences back to 1932, as there is invaluable time-sequence information in them. For example, there were sequential dry years in the 1970s and we need to ensure that our dry year solution is robust to a repeat of such events.

# 3.2 Wind

We used wind inflow simulated actuals sourced from the Renewables Ninja website which is based on historical satellite imagery. Forty years of hour data were downloaded for eight regions, back to 1980. Regions used are:

- Northland
- Kaimai
- Hawkes Bay
- Waikato
- Auckland
- Wairarapa
- Canterbury
- Southland

It was found that Renewable Ninja average wind based synthetic data, including its assumed power curves, matches pattern and volatility of actuals<sup>50</sup> quite closely. The Renewable Ninja data were scaled to actuals where possible.

<sup>&</sup>lt;sup>50</sup> Comparisons were made with available data from Tararua, Te Uku, White Hill, Te Apiti, West Wind, Mahineragi, Te Rere Hau and Waverly (the last estimated to align with observed capacity factors)

# 3.3 Solar

We used solar inflow simulated actuals sourced from ANSA<sup>51</sup> and based on meteorological records. Forty<sup>52</sup> years of hour data were provided for the following regions, back to 1980. The technology assumptions are described section 6. The regions used are:

Utility solar:

- Far North
- Auckland
- Waikato
- Bay of Plenty
- Hawkes Bay
- Wellington
- Nelson-Tasman
- Christchurch
- Central Otago

Rooftop solar:

- Auckland
- Wellington
- Christchurch

# 3.4 Aligning hydro, wind and solar sequences

With 40 years of wind and solar inflow data, and 89 years of hydro inflow data, we needed a way of 'back-casting' the wind and solar inflow data to the years 1932 to 1979. We kept wind and solar inflow data aligned together to preserve wind/solar inflow relationships.

We could do that randomly, by for example repeating the same 40-year block, but it would be better to correlate them as much as possible. We tried and tested multiple ways of achieving this, including:

- Annual, quarterly and four-weekly time frames
- Different weightings North Island versus South Island

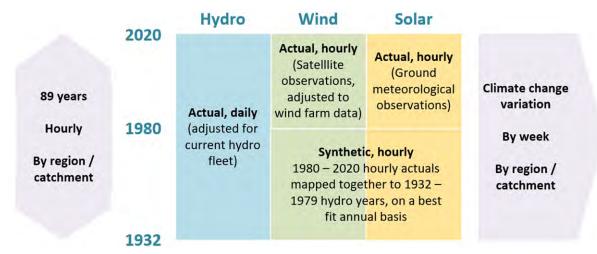
We measured these approaches against the resultant wind/hydro correlation and, for annual timeframes, the annual inflow deviation. We found that annual matching performed best: it has few discontinuities, avoids seasonality issues and preserves intra year wind/solar correlations.

We therefore mapped each hydro year before 1980 with the closest hydro year 1980 to 2020, and hence with the corresponding wind/solar year.

<sup>&</sup>lt;sup>51</sup> www.ansa.nz

<sup>&</sup>lt;sup>52</sup> We actually had 50 years of data, but only used the latest 40 to preserve wind/solar inflow relationships.

# 3.5 Climate change impacts on inflows


We engaged Dr Jen Purdie of ClimateWorks to estimate the climate change impacts on New Zealand hydro catchment inflows and wind speeds at 2050. She provided estimates by week of year, by catchment for hydro and by region for wind, of expected inflow percentage changes for 2050, noting that:

- There was greater confidence in the direction of the change than its timing
- This confidence of direction is especially strong for South Island hydro, with winter and spring precipitation falling more as rain than as snow, and hence hydro inflows arriving sooner
- There was no evidence of systemic expected changes to irradiance, so we did not adjust solar inflows for climate change effects.

For our baseline modelling, we applied these estimated climate change impacts 50% at 2035, 100% at 2050, and 100% at 2065 (our three modelling horizons: see section 4.1).

### 3.6 Inflow data summary

Figure 13: Summary of inflow data used



# 4. Common modelling assumptions

### 4.1 Reference years

We have focused our effort on studying three representative periods:

 Table 12: Economic modelling horizons

| Demand and generation                                          | NZ Battery (when modelled)              | Reference year |
|----------------------------------------------------------------|-----------------------------------------|----------------|
| 100% renewables achieved<br>Electrification of demand underway | NZ Battery built and in early operation | 2035           |
| Electrification about half complete                            | NZ Battery in 'steady state'            | 2050           |
| Full electrification                                           | operation                               | 2065           |

As explained below, demand is assumed to grow significantly over time with the electrification of process heat and transport, and is the main driver of the growing need for

continuing generation investment over time (given our 100% renewable assumption means that renewable investment to replace existing fossil-fuel generation has already occurred). As there is uncertainty in the rate of uptake of electrification and in the future path of industrial load, and large generation investments have a binary nature, results for these reference years should be considered as 'around then' rather than as precise dates.

### 4.2 Gross benefits

The model runs with an NZ Battery option do not include the NZ Battery capital or other fixed costs. This is so that the implications of different capital cost structures can be examined expost. Comparison of and NZ Battery option to a no-NZ Battery counterfactual thus provides gross benefits rather than net benefits of an NZ Battery.

### 4.3 Financial assumptions

We use the following financial assumptions for consistency with the NZ Battery indicative business case:

| Base costing year | \$NZ 2021 | Calendar 2021                                                  |
|-------------------|-----------|----------------------------------------------------------------|
| Costs             | \$NZ 2021 | P50 including contingency                                      |
| Discount rate     | % p.a.    | 6% pre-tax real<br>=<br>7 % nominal post-tax return on capital |

 Table 13: Common financial assumptions

Note that the discount rate used in the models is to reflect the commercial discount rate of market generation investors, and so does not need to be the same as the rate used for the NZ Battery indicative business case. How we use the discount rate to derive marginal, annualise generation costs is described in section 6.2: the post-tax nominal 7% rate gives a capital recovery factor which is very close to that resulting from a using real pre-tax 6% rate in the New Zealand context if the long run inflation is 2% p.a.

In SDDP, a separate discount rate can be used for hydro storage, including of major pumped hydro storage options. Variations to this hydro storage discount rates are considered as a sensitivity.

## 4.4 Carbon charge assumptions

We have adopted the Climate Change Commission's carbon charge assumptions:

 Table 14: Carbon charge assumptions

|               |            | 2020 | 2035  | 2050  | 2065  |  |
|---------------|------------|------|-------|-------|-------|--|
| Carbon charge | \$ / tCO2e | \$30 | \$160 | \$250 | \$390 |  |

Most of our modelling is of a 100% renewables world. Our use of carbon charges is therefore restricted to:

• Geothermal new investments (we assume that existing geothermal plant continue to run baseload, and are replaced with lime plant at end of life, so their emissions net out in our comparative model runs)

- Fossil fuel peakers in our less than 100% renewables sensitivities<sup>53</sup>
- NZ Battery options with any greenhouse gas emissions.

In late 2022, the ETS price exceeded \$80 /tCO2e, falling to around \$70 in early 2023. We do not use the \$30 figure in the table in our modelling, which starts at 2035, and expect to review our future carbon charge assumptions for any future NZ Battery economic modelling work.

# 5. Demand assumptions

The following sections discuss the context and components of assumed demand.

## 5.1 NZAS

It is assumed that Tiwai Point aluminium smelter ('NZAS') will be retired before 2035. Its retirement and its timing, and whether it will be replaced on retirement by another large load, is uncertain. Alternative futures are modelled as a sensitivity.

### 5.2 Base demand

In recent years, average generation has been around 43 TWh per annum (pa) and consumption 40 TWh pa, both including NZAS at about 5 TWh p.a. Generation exceeds consumer load because of transmission and distribution losses. Both the Culy and SDDP models include HVDC losses but assume lossless HVAC grids. We therefore define demand as demand for generation, including HVAC transmission and distribution losses, excluding HVDC losses, and excluding NZAS.

We assume 2021 base demand and annual rates of gross demand growth as follows:

| Table 15: Base | electricity de | emand assumptions |
|----------------|----------------|-------------------|
|----------------|----------------|-------------------|

|                        |        | 2021 | 2035 | 2050 | 2065 |
|------------------------|--------|------|------|------|------|
| Growth in Base ex NZAS | % p.a. |      | 0.5% | 0.8% | 0.6% |
| Base excluding NZAS    | TWh    | 37.3 | 40.0 | 45.1 | 49.3 |

### 5.3 Energy efficiency

Demand is assumed net of general efficiency improvements over time, and thus implicitly include the Climate Change Commission's assumptions on energy efficiency improvement. The Climate Change Commission's demonstration pathway includes in its base demand:

- Residential and commercial efficiency improvements of 1% per annum per person. From a 2020 base, this equates to 14% increase by 2035, 26% by 2050 and (in our extended timeframe) 36% by 2045.
- Commercial and public building's heat demand reducing by 2035 by 30% for new builds and 25% for existing.

Efficiency improvements in transport are accounted for explicitly as described in section 5.5 below.

<sup>&</sup>lt;sup>53</sup> Some NZ Battery technical reports refer to fossil fuel peakers as "black peakers" as a counterpoint to "green" – or renewable energy – peakers.

# 5.4 Embedded generation

Our demand is gross demand so exclusive of any embedded generation that we explicitly model, including:

- Residential and commercial rooftop solar, covered in section 6.4.2
- Utility wind and solar farms, covered in sections 6.3 and 6.4 (which include embedded and grid-connected plant)
- Small hydro schemes (such as Highbank, Cobb and Waipori) which are accounted separately in our inflow data.

### 5.5 Transport

Significant transport electrification through the progressive introduction of electric vehicles (EVs) is assumed as:

|                     |          |             | 2021 | 2035 | 2050 | 2065 |
|---------------------|----------|-------------|------|------|------|------|
| Efficiency          | Light    | MWh / vKm   | 0.19 | 0.18 | 0.16 | 0.16 |
| Efficiency          | Heavy    | MWh / vKm   | 4.24 | 10.0 | 12.8 | 12.8 |
| Usage               | Light    | billion vKm | 41.7 | 51.2 | 53.0 | 56.2 |
| (EV & ICE)          | Heavy    | billion vKm | 3.16 | 3.5  | 3.6  | 3.9  |
| Proportion          | Light    | % vkm       | 1%   | 45%  | 95%  | 99%  |
| of EVs by           | Heavy    | % vkm       | 0%   | 2%   | 6%   | 6%   |
| usage               | Off road | % On Road   | -    | 5%   | 15%  | 20%  |
|                     | Light    | TWh pa      | 0.0  | 4.1  | 8.2  | 8.8  |
| Total               | Heavy    | TWh pa      | 0.0  | 0.8  | 2.6  | 3.0  |
| transport<br>demand | Off road | TWh pa      | -    | 0.3  | 1.6  | 2.36 |
|                     | EV Total | TWh pa      | 0.1  | 5.2  | 12.4 | 14.2 |

 Table 16:
 Transport electrification assumptions

Transport demand includes electricity use for travel plus round trip battery charging losses plus average distribution and HVAC transmission losses.

### 5.6 **Process heat**

Significant process heat electrification through the progressive electrification of fossil-fuelled industrial processes is assumed as follows, allowing that some industrial decarbonisation will be through biomass or equivalent rather than electrical means:

|                          |     | 2035 | 2050 | 2065 |
|--------------------------|-----|------|------|------|
| Low and mid temperature  | TWh | 2.4  | 5.2  | 6.2  |
| High temperature (dairy) | TWh | 1.8  | 2.8  | 2.4  |
| Process heat total       | TWh | 4.2  | 8.0  | 8.6  |

**Table 17:** Process heat additional demand assumptions

# 5.7 Summary of gross demand

We thus assume gross base demand as follows, built up from the components described above:

|                               |        | 2021 | 2035 | 2050 | 2065 |
|-------------------------------|--------|------|------|------|------|
| Base excluding NZAS           | TWh pa | 37.3 | 40.0 | 45.1 | 49.3 |
| Transport                     | TWh pa | 0.0  | 5.2  | 12.4 | 14.2 |
| Process heat                  | TWh pa | -    | 4.2  | 8.0  | 8.6  |
| Total gross demand excl. NZAS | TWh pa | 37.3 | 49.4 | 65.5 | 72.0 |

Table 18: Summary of gross electricity demand assumptions

### 5.8 Demand response

Demand response includes the shifting or reduction in load in response to price, as well as shortage, which could for example be manifested, as a last resort, as rolling black-outs. The term 'demand response' tends to mean different things to different people, so we use it as the generic but refer preferentially to three specific forms of response:

- Load shifting. This is where 'demand response' is in the form of delayed or shifted consumption of electricity. This includes 'classic' short-term demand response from space or water heating or cooling<sup>54</sup>. It includes also emerging forms of load shifting through the use of batteries, including residential/commercial batteries (possibly as part of a solar system), utility-scale batteries, and smart EV-charging
- **Load curtailment**. This is where load, such as industry, voluntarily reduces consumption in response to high prices. If the prices are efficient at reflecting the marginal costs of supply, this is an efficient and economically desirable outcome. If the prices eliciting the load curtailment are inefficiently high, then such curtailment is inefficient
- **Shortage**. This is where load is forced off because (despite high prices likely to be prevailing), there is not enough voluntary load curtailment to balance limited supply with demand, and demand needs to be physically reduced through for example rolling blackouts. While shortages are undesirable, a power system – especially one like ours subject to the vagaries of weather – 'gold plated' enough that shortage would never occur would not be economic: accepting some small but non-zero risk of shortage can provide an optimum outcome.

Economic models place a dollar value on electricity supply to consumers, which is used to find the economic optimum between increased supply-side investment and reliability and security of supply. It is usually expressed in energy terms, e.g. \$/MWh.

Most discussion in the industry on this has been focused on the value of lost load (VoLL), a value enshrined in the Code to guide Transpower's assessment of connection and interconnection investments. Such discussion has been focused on short-term loss of supply measured in minutes or hours. As Castalia have noted, "VoLL would be a relevant concept for setting a security of supply mechanism for capacity-related shortages. It is not a relevant concept when dealing with energy related shortages, since energy related shortages can be

<sup>&</sup>lt;sup>54</sup> But does not include load shifting from ripple control, which in included in the base demand shapes used.

addressed through conservation campaigns and planned rota-cuts, which impose lower costs per kWh saved."55,56

Distribution and average HVAC transmission losses are included, so demand response is measured relative to demand for generation.

Other than these demand responses, demand is assumed inelastic. Thus, if an NZ Battery option reduces average prices, any resultant demand increase and accelerated uptake of electrification is <u>not</u> modelled.

#### 5.8.1 Load shifting

Gross demand implicitly assumes existing levels of load shifting from ripple control, as base demand shapes used are after load control.

EV smart-chargers and embedded batteries are not included in gross demand but are explicitly modelled, based on Transpower's assumptions in Whakamana i Te Mauri Hiko.

#### 5.8.2 Load curtailment

We assume three tranches of increasing load curtailment:

#### Table 19: Load curtailment assumptions

|         |                         |            | 2021    | 2035    | 2050    | 2065    |
|---------|-------------------------|------------|---------|---------|---------|---------|
| Tranche | Curtail at prices above | Percentage | 0.50 GW | 0.60 GW | 0.80 GW | 1.00 GW |
| 1       | \$700 /MWh              | 40%        | 0.20 GW | 0.24 GW | 0.32 GW | 0.40 GW |
| 2       | \$1,000 /MWh            | 30%        | 0.15 GW | 0.18 GW | 0.24 GW | 0.30 GW |
| 3       | \$1,500 /MWh            | 30%        | 0.15 GW | 0.18 GW | 0.24 GW | 0.30 GW |

#### 5.8.3 Shortage

We assume three tranches of shortage corresponding to increasingly deep and prolonged shortages.

While we expect our economy and community to become increasingly reliant on electricity as technology and electrification advances, we assume that the economic and social cost per unit for the first responses to shortage – the 'low hanging fruit' – will remain constant over time.

#### Table 20: Shortage assumptions

| Shortage<br>tranche | Covers, for example:    | Curtail at prices<br>above | Demand applied to                               |
|---------------------|-------------------------|----------------------------|-------------------------------------------------|
| 1                   | Conservation campaign   | \$800 /MWh                 | First 5% GWh use in a<br>shortage <sup>57</sup> |
| 2                   | Shallow rolling outages | \$3,000 /MWh               | 5% of demand                                    |
| 3                   | Deep rolling outages    | \$10,000 /MWh              | Remainder of demand                             |

<sup>&</sup>lt;sup>55</sup> Castalia 2007 Electricity security of supply policy review

<sup>&</sup>lt;sup>56</sup> EC 2007 Security of Supply Reserve Energy Review Modelling Presentation (web)

<sup>&</sup>lt;sup>57</sup> This is modelled in Culy but not SDDP modelling, but is rarely used

# 6. Generation generic assumptions

This section covers our assumptions on new generation and new battery investments, and how our economic models use the assumptions.

### 6.1 Existing generation

Table 21: Existing generation assumptions

| Hydro including<br>contingent<br>storage | Maintained at current levels, with no expansion other than as an NZ Battery option                                                                                                                                                                                                                                     |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wind and solar                           | Maintained at current levels, until end of life when they are replaced with equivalent or expanded projects.                                                                                                                                                                                                           |
| Geothermal                               | <ul><li>All existing geothermal plant retained, and Tauhara (currently under construction) assumed commissioned.</li><li>Variable operating costs subject to the carbon charge.</li><li>All existing (and new) geothermals are assumed to be "must run", so their operation is unaffected by carbon charges.</li></ul> |
| Fossil fuel<br>including cogen           | All existing fossil fuel generation is retired by 2035<br>Glenbrook, Kapuni, Kinleith, Mangahewa cogeneration plants remain in<br>service (Te Rapa retired as currently planned)                                                                                                                                       |

#### 6.1.1 Contingent storage

Contingent storage is hydro storage that is, by the conditions of its resource consent, only available for electricity generation under certain conditions. Contingent storage is the water at the bottom of the lake, below its normal operating range for electricity generation, so it can only physically be used when the lake is at or below the bottom of its normal operating range.

In most of our modelling runs, we assume that dry years will be managed without resource to contingent storage. For contingent storage scenarios, we assume that the current contingent storage arrangements continue unchanged through our study time horizon.

| Level of risk | Nominal                                         | 58                                                                                              | Cumulative total |         |  |
|---------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------|---------|--|
| Level of fisk | Level of risk risk Available contingent storage |                                                                                                 | Summer           | Winter  |  |
| Normal        | <1%                                             | None                                                                                            | (                | )       |  |
| Watch         | 1%+                                             | None                                                                                            | 0                |         |  |
| Alert         | 4%+                                             | 67 GWh from Lake Hawea<br>331 GWh from Lake Pukaki<br>220 GWh from Lake Tekapo<br>(summer only) | 618 GWh          | 398 GWh |  |
| Emergency     | 10%+                                            | 10%+ 214 GWh from Lake Pukaki                                                                   |                  | GWh     |  |
| TOTAL         |                                                 |                                                                                                 | 832 GWh          | 612 GWh |  |

| Table 22: | Contingent | storage | assumptions |
|-----------|------------|---------|-------------|
|-----------|------------|---------|-------------|

<sup>&</sup>lt;sup>58</sup> <u>Contingent Storage additional information.pdf (transpower.co.nz)</u>

## 6.2 Marginal new generation investment costs

Because we are focused on modelling specific years, and we are focused on comparison of futures with and without NZ Battery, we use marginal, annualised generation capital and operating costs. While new generation is expected to be built in large 'chunks' such as a 200 MW wind farm, we model it as built over time by the MW. This avoids large binary decisions, such as whether that farm was built just before or just after the start of a reference year, from causing artificial swings in cost or benefit when we compare two scenarios for a specific year.

For these reasons, we distil new generation investment costs down to marginal levelised costs of energy (LCOE) in \$/MWh and fixed annualised costs in \$/kW/year as key parameters. The costs are assumed to continue 'in perpetuity' thus covering mid-life upgrades and replacements at end of life.

To develop them we use a real capital recovery factor, calculated for each generation type, which achieves a post tax nominal return of 7%. This gives the real capital recovery required on the assumption of a constant real revenue per annum over an economic life, accounting for timing of cashflows, depreciation, degradation, tax and ongoing or other periodic capital costs such as mid-life upgrades.

### 6.3 Wind generation investment

#### 6.3.1 Onshore wind

We base our wind generation building-block costs on generic systems:

|           |                              |            | Size of farm |      |       |       |       |
|-----------|------------------------------|------------|--------------|------|-------|-------|-------|
|           |                              |            | 20MW         | 50MW | 100MW | 150MW | 200MW |
|           | Capacity available           | MW         | Unrestricted |      |       |       |       |
| CAPEX     | Turbines                     | \$/kWac    | 1240         | 1230 | 1240  | 1250  | 1220  |
|           | EPC other                    | \$/kWac    | 1800         | 860  | 570   | 480   | 420   |
|           | CAPEX other                  | \$/kWac    | 210          | 190  | 180   | 180   | 170   |
|           | Contingency                  | \$/kWac    | 5%           | 5%   | 5%    | 5%    | 5%    |
|           | Total (less<br>transmission) | \$/kWac    | 3400         | 2400 | 2100  | 2000  | 1900  |
| OPEX      | Total                        | \$/kW/year | 51           | 50   | 48    | 46    | 44    |
| Proportio | on in generation stack       | %          | 1%           | 2%   | 26%   | 28%   | 43%   |

#### Table 23: Onshore wind costs by farm size

We then assume learning curves for some components, reducing real costs over time. Other components are assumed constant cost in real terms.

|                        |      | Cost m | ultiplier | % p.a. |       |       |       |
|------------------------|------|--------|-----------|--------|-------|-------|-------|
|                        | 2021 | 2035   | 2050      | 2065   | 2035  | 2050  | 2065  |
| Turbines and EPC other | 100% | 87%    | 78%       | 76%    | -1.0% | -0.7% | -0.2% |

#### Table 24: Onshore wind CAPEX learning curves

We then combine from the previous tables:

- Total CAPEX less transmission, 2022, by farm size
- Weighted by the proportion in generation stack, by farm size, and
- Adjusted by the learning curve per CAPEX component.

To give us the marginal \$/kWac and LCOE as below. VOM for wind is low, so we can model it explicitly or include it in FOM, so both options are tabulated:

#### Table 25: Onshore wind marginal costs

| Capital cost excluding trans | 2021     | 2035 | 2050 | 2065 |      |
|------------------------------|----------|------|------|------|------|
| FOM (VOM not modelled)       | \$/kW/yr | 46   | 46   | 46   | 46   |
| FOM (VOM modelled)           | \$/kW/yr | 42   | 42   | 42   | 42   |
| VOM (if modelled)            | \$/MWh   | 1.2  | 1.2  | 1.2  | 1.2  |
| Base \$/kWac                 | \$/kWac  | 1820 | 1580 | 1420 | 1380 |
| Fixed annualised costs       | \$/kW/yr | 190  | 170  | 160  | 150  |
| New entry costs = LCOE       | \$/MWh   | 54   | 48   | 45   | 44   |

To this we add transmission costs by region, constant in real terms, calculated as the average costs per kW per region from the wind generation stack (see section 14.2):

| Table 26: Onshore wind | transmission costs |
|------------------------|--------------------|
|------------------------|--------------------|

| Decien               | Cost    |
|----------------------|---------|
| Region               | \$/kWac |
| Northland            | 410     |
| Auckland             | 410     |
| Waikato              | 340     |
| Bay Of Plenty        | 100     |
| Central North Island | 290     |
| Taranaki             | 210     |
| Hawke's Bay          | 580     |
| Wellington           | 270     |
| Nelson-Marlborough   | 330     |
| Canterbury           | 390     |
| South Canterbury     | 320     |
| Otago-Southland      | 280     |
| Weighted average     | 320     |

Combining the fixed annualised costs and new entry costs without transmission, with these regional transmission costs gives the wind fixed annualised costs and new entry costs by region by reference year.

Note that the following table of fixed annualised costs is presented for the case of VOM not modelled. See the accompanying spreadsheet for the case of VOM modelled, and (as with many tables in this Assumption Book) for more decimal places if required.

| Pagion               | Onshore wind fixed annualised costs \$/kW/yr |      |      |      |  |  |
|----------------------|----------------------------------------------|------|------|------|--|--|
| Region               | 2021                                         | 2035 | 2050 | 2065 |  |  |
| Northland            | 230                                          | 210  | 190  | 190  |  |  |
| Auckland             | 230                                          | 210  | 190  | 190  |  |  |
| Waikato              | 220                                          | 200  | 190  | 190  |  |  |
| Bay Of Plenty        | 200                                          | 180  | 170  | 170  |  |  |
| Central North Island | 220                                          | 200  | 180  | 180  |  |  |
| Taranaki             | 210                                          | 190  | 180  | 180  |  |  |
| Hawke's Bay          | 240                                          | 220  | 210  | 210  |  |  |
| Wellington           | 220                                          | 200  | 180  | 180  |  |  |
| Nelson-Marlborough   | 220                                          | 200  | 190  | 180  |  |  |
| Canterbury           | 220                                          | 210  | 190  | 190  |  |  |
| South Canterbury     | 220                                          | 200  | 190  | 180  |  |  |
| Otago-Southland      | 220                                          | 200  | 180  | 180  |  |  |
| Weighted average     | 220                                          | 200  | 190  | 180  |  |  |

 Table 27: Onshore wind fixed annualised costs (VOM not modelled)

#### Table 28: Onshore new entry costs

| Decien               | Onsho | re wind new entr | y costs = LCOE | \$/MWh |
|----------------------|-------|------------------|----------------|--------|
| Region               | 2021  | 2035             | 2050           | 2065   |
| Northland            | 63    | 58               | 54             | 53     |
| Auckland             | 63    | 58               | 54             | 53     |
| Waikato              | 61    | 56               | 52             | 52     |
| Bay Of Plenty        | 56    | 51               | 47             | 46     |
| Central North Island | 60    | 55               | 51             | 50     |
| Taranaki             | 59    | 53               | 50             | 49     |
| Hawke's Bay          | 67    | 62               | 58             | 57     |
| Wellington           | 60    | 54               | 51             | 50     |
| Nelson-Marlborough   | 61    | 56               | 52             | 51     |
| Canterbury           | 63    | 57               | 54             | 53     |
| South Canterbury     | 61    | 56               | 52             | 51     |
| Otago-Southland      | 60    | 55               | 51             | 50     |
| Weighted average     | 61    | 56               | 52             | 51     |

#### 6.3.2 Offshore wind

Investment in offshore wind in New Zealand is possible within the horizon considered. Roaring 40s identify three most likely areas, off the:

- West coast of Auckland, with some 4 GW of potential
- Waikato west coast, with some 2 GW of potential
- South Taranaki coast, with some 2 GW of potential (and the highest wind speed).

As Roaring 40s describe it:

The South Taranaki coast option is a large area with an extremely good wind resource (average wind speed 9.6 m/s) and a water depth of less than 50 m. The Auckland and Waikato coast options aren't as attractive from a wind resource perspective (average wind speed 8.3m/s) and are in deeper water (60 m to 150 m deep) but have the advantage of being closer to the large load centre of the Auckland Region.

Offshore wind is currently significantly more expensive than onshore wind, but its costs are declining more rapidly. Here are the Climate Change Commission's assumptions:

|               |                 |         |              |             | VOM             |           | Cost    | Cap  | oital |
|---------------|-----------------|---------|--------------|-------------|-----------------|-----------|---------|------|-------|
|               | Capacity factor | Capital | FOM          | VOM         |                 | reduction | 2035    | 2050 |       |
|               |                 |         |              |             | rate            | average   | average |      |       |
|               | %               | \$ / kW | \$ / kW / yr | \$ /<br>MWh | % p.a.          | \$ / kW   | \$ / kW |      |       |
| Onshore wind  | 40 %            | \$ 2100 | \$ 24        | \$10        | 0.53 to<br>0.80 | 1,900     | 1,720   |      |       |
| Offshore wind | 44 %            | \$ 5200 | \$ 140       | <b>\$</b> 0 | 2.33 to<br>3.50 | 3,349     | 2,175   |      |       |

#### Table 29: CCC wind cost assumptions

There is uncertainty in when and how much offshore wind investment there will be in New Zealand. However, as Roaring 40s conclude, and given that some potential investors are expressing interest<sup>59</sup> we cannot rule out offshore wind by 2035 either. Work is underway within MBIE to develop a regulatory regime for licensing offshore renewables to be in place by the end of 2024.

Our modelling, of onshore wind only, indicates that significant onshore wind investment is likely in the Auckland, Waikato and Taranaki regions (along with wind elsewhere across New Zealand). The modelling takes into account the regional wind resource, the advantages of diversity between regions, proximity to transmission, and losses and capacity of the HVDC link. Wind tends to be stronger offshore than onshore, but with similar shapes to their distributions over time.

Thus, the results of our modelling of onshore wind can be interpreted, through postprocessing of modelling results, as including onshore and offshore possibilities in those three regions.

Further, the critical generation investments for the comparative economic analyses are those that depend on the NZ Battery scenario – no NZ Battery, and different NZ Batteries. We try to capture the nuances of the NZ electricity market's response to the supply/demand/storage

<sup>&</sup>lt;sup>59</sup> For example, the NZ Super Fund and Copenhagen Infrastructure Partners are considering investment in a large scale offshore wind to South Taranaki (web).

balances under each of these scenarios, and assume that onshore wind developments will be more reflective of these differences than would major, binary offshore wind developments.

## 6.4 Solar generation investment

#### 6.4.1 Utility scale solar generic

To obtain an expected cost per kW we base our building-block costs on generic systems:

- Single-axis tracking, also referred to as azimuth tracking
- Inverter loading ratio 1.3 (i.e. 30% overbuild relative to inverter capacity, with clipping)
- Photovoltaic performance degradation of 0.6% p.a. (on the dc side of the inverter)
- Capacity factor of 22% (as a lifetime average, equivalent to 24% in year one)
- 25 year life.

|       |                               |            | Size of farm |       |              |       |       |
|-------|-------------------------------|------------|--------------|-------|--------------|-------|-------|
|       |                               |            | 20MW         | 50MW  | 100MW        | 150MW | 200MW |
|       | Capacity available            | MW         |              |       | Unrestricted | k     |       |
|       | EPC Modules                   | \$ / kWac  | 750          | 670   | 620          | 590   | 570   |
| ×     | EPC Inverters and<br>trackers | \$ / kWac  | 450          | 430   | 410          | 400   | 400   |
|       | EPC Labour                    | \$ / kWac  | 500          | 435   | 390          | 365   | 350   |
| CAPEX | <b>EPC Materials</b>          | \$ / kWac  | 500          | 435   | 390          | 365   | 350   |
| O     | Other                         | \$ / kWac  | 50           | 40    | 40           | 40    | 30    |
|       | Contingency                   | \$ / kWac  | 9.7%         | 8.9%  | 7.6%         | 6.3%  | 5.0%  |
|       | Total (less transmission)     | \$ / kWac  | 2,468        | 2,189 | 1,991        | 1,871 | 1,785 |
| OPEX  | FOM                           | \$/kW/year | 36           | 33    | 31           | 30    | 29    |
| F     | Proportion in generation s    | stack      | -            | 2%    | 20%          | 10%   | 69%   |

**Table 30:** Utility solar costs by farm size, less transmission

We then assume learning curves for modules, inverters, trackers and labour components as below.

|         | Cost multiplier |      |      |      | % p.a. |       |       |
|---------|-----------------|------|------|------|--------|-------|-------|
|         | 2021            | 2035 | 2050 | 2065 | 2035   | 2050  | 2065  |
| Modules | 100%            | 52%  | 26%  | 18%  | -4.6%  | -4.6% | -2.3% |

We then combine from the previous tables:

- Total CAPEX less transmission by farm size
- Weighted by the proportion in generation stack, by farm size, and
- Adjusted by the learning curve per CAPEX component.

To give us the marginal costs as follows:

| Capital costs exclude transmission |          | 2021 | 2035 | 2050 | 2065 |
|------------------------------------|----------|------|------|------|------|
| FOM                                | \$/kW/yr | 0    | 0    | 0    | 0    |
| VOM                                | \$/kW/yr | 29   | 29   | 29   | 29   |
| Base \$/kWac                       | \$/kWac  | 1800 | 1200 | 780  | 670  |
| Fixed annualised costs             | \$/kW/yr | 190  | 130  | 96   | 87   |
| New entry costs = LCOE             | \$/MWh   | 88   | 61   | 45   | 41   |

#### Table 32: Utility solar marginal costs

To this we add transmission costs by region, constant in real terms, calculated as the average costs per kW per region from the solar generation stack (see section 14.3):

Table 33: Utility solar transmission costs

| Pogion               | Cost    |
|----------------------|---------|
| Region               | \$/kWac |
| Northland            | 250     |
| Auckland             | 220     |
| Waikato              | 250     |
| Bay Of Plenty        | 190     |
| Central North Island | 270     |
| Taranaki             | 380     |
| Hawke's Bay          | 190     |
| Wellington           | 290     |
| Nelson-Marlborough   | 270     |
| Canterbury           | 350     |
| South Canterbury     | 190     |
| Otago-Southland      | 280     |
| Weighted average     | 260     |

Combining the fixed annualised costs and new entry costs without transmission, with these regional transmission costs gives:

| Pagion               | Utility solar fixed annualised costs \$/kW/yr |      |      |      |  |  |
|----------------------|-----------------------------------------------|------|------|------|--|--|
| Region               | 2021                                          | 2035 | 2050 | 2065 |  |  |
| Northland            | 207                                           | 149  | 117  | 108  |  |  |
| Auckland             | 204                                           | 146  | 114  | 105  |  |  |
| Waikato              | 207                                           | 148  | 117  | 107  |  |  |
| Bay Of Plenty        | 202                                           | 144  | 112  | 103  |  |  |
| Central North Island | 209                                           | 150  | 119  | 110  |  |  |
| Taranaki             | 218                                           | 160  | 128  | 119  |  |  |
| Hawke's Bay          | 202                                           | 143  | 112  | 102  |  |  |
| Wellington           | 210                                           | 152  | 120  | 111  |  |  |
| Nelson-Marlborough   | 209                                           | 150  | 119  | 110  |  |  |
| Canterbury           | 215                                           | 157  | 125  | 116  |  |  |
| South Canterbury     | 202                                           | 144  | 112  | 103  |  |  |
| Otago-Southland      | 209                                           | 151  | 119  | 110  |  |  |
| Weighted average     | 208                                           | 149  | 118  | 108  |  |  |

#### Table 34: Utility solar fixed annualised costs

#### Table 35: Utility solar LCOE

| Decien               | Utility new entry costs = LCOE \$/MWh |      |      |      |  |  |
|----------------------|---------------------------------------|------|------|------|--|--|
| Region               | 2021                                  | 2035 | 2050 | 2065 |  |  |
| Northland            | 99                                    | 71   | 56   | 51   |  |  |
| Auckland             | 97                                    | 69   | 54   | 50   |  |  |
| Waikato              | 98                                    | 71   | 55   | 51   |  |  |
| Bay Of Plenty        | 96                                    | 68   | 53   | 49   |  |  |
| Central North Island | 99                                    | 72   | 56   | 52   |  |  |
| Taranaki             | 104                                   | 76   | 61   | 56   |  |  |
| Hawke's Bay          | 96                                    | 68   | 53   | 49   |  |  |
| Wellington           | 100                                   | 72   | 57   | 53   |  |  |
| Nelson-Marlborough   | 99                                    | 72   | 56   | 52   |  |  |
| Canterbury           | 102                                   | 75   | 60   | 55   |  |  |
| South Canterbury     | 96                                    | 68   | 53   | 49   |  |  |
| Otago-Southland      | 100                                   | 72   | 57   | 52   |  |  |
| Weighted average     | 99                                    | 71   | 56   | 52   |  |  |

#### 6.4.2 Rooftop solar

Rooftop solar is modelled at a fixed build rate, so investment in rooftop solar is not a variable optimised alongside wind, utility solar and other generation. This is to reflect that rooftop solar investment drivers are multi-faceted, not just based on wholesale price. Rooftop solar:

- Is accounted for after demand, so it is treated as another form of generation to meet gross demand for generation
- Is implicitly grossed-up to include the quantity of distribution and HVAC transmission losses saved
- Implicitly also accounts for the average level of module efficiency degradation.

|                                  |                         | 2021 | 2035 | 2050 | 2065 |
|----------------------------------|-------------------------|------|------|------|------|
| Residential                      | %                       | 2%   | 8%   | 14%  | 20%  |
| Commercial                       | 70                      | -    | 5%   | 7%   | 10%  |
| <b>Residential installations</b> | Number of installations | 0.04 | 0.16 | 0.31 | 0.47 |
| <b>Commercial Installations</b>  | (millions)              | -    | 0.02 | 0.03 | 0.04 |
| Residential                      | kW per<br>installation  | 3.8  | 4    | 4    | 4    |
| Commercial                       |                         | 7    | 7    | 7    | 7    |
| Residential                      |                         | 0.2  | 0.8  | 1.5  | 2.3  |
| Commercial                       | TWh                     | -    | 0.1  | 0.2  | 0.3  |
| Rooftop                          |                         | 0.2  | 0.9  | 1.7  | 2.6  |

#### Table 36: Rooftop solar assumptions

This is similar to the Climate Change Commission's assumption of 10% of household have 3.5 kW solar rooftop installations by 2040.

Rooftop solar is assumed to be in one of the three load centres Auckland. Wellington and Christchurch for which we have full solar inflow sequences (see section 3.3).

We model rooftop solar uptake as exogenous, i.e. not in response to market prices. Hence, the model results can be interpreted for higher or lower rooftop solar uptake – as a first approximation – by considering lower or higher demand, i.e. modelled results for 2050 could be interrupted as say for late 2040s or early 2050s.

#### 6.5 Geothermal generation investment

It is assumed that Tauhara, currently under construction, is commissioned at 250 MW.

We assume new market geothermal investment options in three tranches (after Lawless 2020):

- Low-emissions, with 230 MW available and 60 Kg C / MWh gross emissions
- Medium-emissions, with 450 MW available and 115 Kg C / MWh gross emissions
- High-emissions, with 100 MW available and 150 Kg C / MWh gross emissions.

A significant uncertainty in future geothermal investment is the rate of geothermal carbon reinjection, as:

- Most carbon is already captured, but currently vented to the atmosphere. These gases could instead be re reinjected into the subsurface field. There is some geothermal carbon reinjection in Iceland, the USA and Turkey, and trials are underway here in New Zealand.
- To truly sequester the reinjected carbon, it needs to mineralise, which can happen in basaltic rock such as exists in Iceland. However, the rock type in our geothermal zone is not well suited to mineralisation because it does not contain all the desired minerals found in basalt.
- Absent mineralisation, there is a significant risk that reinjected carbon migrates through the reservoir and leads to an increasing concentration of carbon coming up through production wells, as has been observed in Turkey. It may take years before this effect is observed (or demonstrated not to occur) in our trials.
- Alternatively, it may be that continual reinjection keeps the carbon sub-surface indefinitely, even if it does not mineralise.
- However, the re-injection of carbon can dissolve rock, increasing the permeability of the reservoir around the injection well and beyond, with the possibility of over time creating a CO<sub>2</sub> fountain with local as well as atmospheric impact.
- It is thus an unknown how successful geothermal carbon reinjection will be in New Zealand over our long-term outlook horizon, and successes are likely to be fieldspecific
- We therefore will run sensitivities around an assumed success rate of 50% for low, medium and high emissions fields.

For modelling purposes, we include the successful 100% injection, zero emission fields with low emissions fields, as they all get built in all scenarios, and different emissions rates can then be post-processed to reflect different assumptions.

This leads to the following capacities of market geothermal availability:

| Table 37: Geothermal | resource | assumptions |
|----------------------|----------|-------------|
|----------------------|----------|-------------|

|           |          | Emissions  | Geothermal resource |
|-----------|----------|------------|---------------------|
|           |          | Kg C / MWh | MW                  |
|           | Zero net | 0          | 400                 |
| Emissions | Low      | 60         | 120                 |
| tranche   | Medium   | 115        | 230                 |
|           | High     | 150        | 50                  |
|           | TOTAL    |            | 800                 |

Another significant uncertainty is geothermal capacity factor. Geothermal plant are typically run continually as baseload plant. In recent years our geothermal fleet has been running in the high 80s percentage capacity factors<sup>60</sup>. Lawless (2020), looking forward, suggests

<sup>&</sup>lt;sup>60</sup> New Zealand Geothermal Association 2020 Annual NZGA Geothermal Review (<u>web</u>), confirmed by MBIE analysis.

capacity factors in the range of 90% to 95% will be achievable. We have assumed a figure in the low 90s of 91%.

|                   |                      |                     |             | 2020           | 2035   | 2050   | 2065   |
|-------------------|----------------------|---------------------|-------------|----------------|--------|--------|--------|
| CAPEX \$/kW       |                      | \$/kW               | \$5500 / kW |                |        |        |        |
|                   |                      | FOM                 | \$/kW pa    | \$ 189 / kW pa |        |        |        |
| VOI               | M exclu              | iding carbon charge | \$ / MWh    |                | \$0/   | MWh    |        |
|                   |                      | Capacity factor     | %           |                | 91     | %      |        |
|                   | Emissions Kg C / MWh |                     | Kg C / MWh  | Up to 60       |        |        |        |
|                   | Low                  | VOM                 | \$ / MWh    | \$2            | \$ 10  | \$ 15  | \$ 23  |
| iche              |                      | LCOE                | \$ / MWh    | \$ 81          | \$ 88  | \$ 94  | \$ 102 |
| tran              | ε                    | Emissions           | Kg C / MWh  | 115            |        |        |        |
| ions              | Medium               | VOM                 | \$ / MWh    | \$3            | \$ 18  | \$ 29  | \$ 45  |
| Emissions tranche | ž                    | LCOE                | \$ / MWh    | \$ 82          | \$ 97  | \$ 108 | \$ 124 |
| Emissions         |                      | Kg C / MWh          |             | 15             | 50     |        |        |
|                   | High                 | VOM                 | \$ / MWh    | \$ 5           | \$ 24  | \$ 38  | \$ 59  |
|                   |                      | LCOE                | \$ / MWh    | \$ 83          | \$ 103 | \$ 116 | \$ 137 |

#### Table 38: Geothermal generic generation assumptions

### 6.6 Peakers

Peakers are fast-start turbines that can run for an hour or two, or days or weeks or longer. Peakers are modelled in all scenarios, as our modelling of a future world without peakers does not produce a credible solution.

Peakers are assumed to be 'green' peakers in our 100% renewable scenarios, which are the focus of our analysis.

We also model fossil fuel peakers as a sensitivity.

Some modelled peaker operation for multi-day events could represent also other technologies operating at similar price levels, such as load curtailment (additional to that covered in section 4.8.2) or storage devices capable of multi-day generation such as flow batteries.

#### 6.6.1 Green peakers

A green peaker is a low capital cost, high operating cost generation plant, running on a zerocarbon fuel. With their high operating costs, green peakers would be expected to operate at low capacity factors only to cover periods of low intermittent renewables and/or very dry periods.

CAPEX costs are expected to be similar to fossil-fuel powered peakers:

Table 39: Green peaker CAPEX assumptions

| CAPEX | \$/kW | \$1,000 |
|-------|-------|---------|
|-------|-------|---------|

| Lifetime                | Years    | 25    |
|-------------------------|----------|-------|
| Capital recovery factor | %        | 7.8%  |
| Capex recovery          | \$/kW pa | \$78  |
| Fuel holding costs      | \$/kW pa | \$14  |
| FOM                     | \$/kW pa | \$10  |
| Fixed costs annualised  | \$/kW pa | \$100 |

Operating costs are primarily driven by the cost of fuel, which is problematic to estimate across our extended time horizon, and given the variety of possible fuel types, including ethanol, biodiesel, biogas, green hydrogen and green ammonia. We assume \$45 / GJ but consider this to be at the cheaper end of a range of possible but unknown prices (and so will perform sensitivity analyses around higher prices):

Table 40: Green peaker OPEX assumptions

| Cost of bio fuel        | \$ / GJ  | \$ 45  |
|-------------------------|----------|--------|
| Generation efficiency   | %        | 34%    |
| Fuel cost of generation | \$ / MWh | \$ 480 |
| O & M                   | \$ / MWh | \$ 8   |
| VOM                     | \$ / MWh | \$ 480 |

Modelled green peaker operation could represent also other technologies operating at similar price levels, such as load curtailment or storage devices capable of multi-day generation such as flow batteries.

We expect to review our green peaker operating costs assumptions to support any further and future economic modelling work.

#### 6.6.2 Fossil fuel peakers

In most scenarios we do not consider fossil fuel peakers in 2035 and beyond. However, in any scenarios that we run with fossil fuel peakers, the following are the assumptions we use.

We assume that coal use for electricity generation ceases before 2035, and that oil use is minimal by comparison with natural gas. This is a conservative assumption, as it is not guaranteed that the market would – with no incentives other than carbon prices – close off coal as an option. So, assuming a gas-only rather than gas and coal future is a strong assumption.

However, given this strong assumption, our issue is the availability and cost of natural gas for electricity generation in New Zealand. The main driver for continued investment in our gas supply chain and infrastructure is likely to be the petrochemical industry and other demand, rather than electricity generation. Our assumption on this is that existing gas peakers and gas storage at Ahuroa are retained, but only used as a last resort backup, and that additional capacity of gas peakers are allowed as required to maintain a secure system (in economic terms) as demand increases.

Because our models use marginal generation costs, we need to distil our assumptions into an annualised fixed cost and a VOM, as below:

| CAPEX                   | \$ / kW    | \$ 1000 |
|-------------------------|------------|---------|
| Lifetime                | Years      | 25      |
| Capital recovery factor | %          | 7.8%    |
| CAPEX recovery          | \$/kW pa   | \$ 78   |
| FOM                     | \$/kW pa   | \$ 10   |
| Fixed costs annualised  | \$ / kW pa | \$ 88   |

#### Table 41: Fossil fuel peaker CAPEX assumptions

For gas costs we assume that gas storage at Ahuroa is maintained at around 11-17 PJ with additional investment to enable greater daily extraction rates (flex) as required, with fixed costs comprising:

- Working capital costs for Ahuroa gas storage as \$ 7 million per annum
- Upgrading Ahuroa extraction rate (\$ 0.4 billion CAPEX), annualised as \$ 41 million per annum
- Option fees to provide gas supply flexibility not met from Ahuroa of \$ 15 million per annum.

This suggests the availability of gas for peaking at some \$ 13.5 / GJ inclusive of flex.

It is possible that the upstream gas industry ceases to be able to maintain the required upstream investment, in which case imported liquid natural gas (LNG) would set a backstop price. A Gas Industry Company paper<sup>61</sup> provides some insight on future LNG prices, as being not much different than the \$ 13.5 / GJ assumed for domestic gas above.

| Cost of gas             | \$ / GJ  | \$ 13.5 |
|-------------------------|----------|---------|
| Generation efficiency   | %        | 34%     |
| Fuel cost of generation | \$ / MWh | \$ 140  |
| O & M                   | \$ / MWh | \$ 8    |
| VOM excluding carbon    | \$ / MWh | \$ 150  |

Table 42: Fossil fuel peaker OPEX assumptions excluding carbon

Table 43: Fossil fuel peaker OPEX assumptions including carbon

|                       |                         | 2021   | 2035   | 2050   | 2065   |  |  |
|-----------------------|-------------------------|--------|--------|--------|--------|--|--|
| Carbon content of gas | kg CO <sub>2</sub> / GJ |        | 5      | 4      |        |  |  |
| Carbon content        | t CO <sub>2</sub> / MWh | 0.53   |        |        |        |  |  |
| Carbon prices         | \$ / t CO <sub>2</sub>  | \$ 30  | \$ 160 | \$ 250 | \$ 390 |  |  |
| Carbon cost           | \$ / MWh                | \$ 17  | \$ 92  | \$ 140 | \$ 220 |  |  |
| VOM                   | \$ / MWh                | \$ 170 | \$ 240 | \$ 290 | \$ 370 |  |  |

<sup>&</sup>lt;sup>61</sup> Gas Industry Company 2021 Gas Market Settings Investigation Consultation Paper (web), section 5.9.

## 6.7 Grid-scale batteries

We assume that grid-scale batteries (Li-ion or equivalent) will be available in 5-hour and 12-hour sizes:

|              |                     |           | 2021              | 2035       | 2050       | 2065       |  |  |
|--------------|---------------------|-----------|-------------------|------------|------------|------------|--|--|
|              | 5-hour battery      | \$ / kWac | \$2000            | \$1084     | \$864      | \$689      |  |  |
| CAPEX        | 12-hour battery     | \$ / kWac | \$3900            | \$2114     | \$1685     | \$1343     |  |  |
|              | Decline rate        | % p.a.    |                   | -4.0% p.a. | -1.5% p.a. | -1.5% p.a. |  |  |
| Rou          | Ind trip efficiency | %         | 85%               |            |            |            |  |  |
| Cell         | replacement rate    | % pa      | 1% of total capex |            |            |            |  |  |
| FOM \$/kW pa |                     |           | \$10 / kW pa      |            |            |            |  |  |
|              | VOM                 | Nil       |                   |            |            |            |  |  |

 Table 44: Grid-scale batteries generic opportunities assumptions

Transmission costs of grid-scale battery connection are assumed low, as grid-scale batteries are likely to be connected at strong points of the grid, and included in CAPEX.

#### 6.8 Instantaneous reserves

Instantaneous reserves are held such that generation can be ramped up, or load ramped down, within seconds to maintain system frequency should a generation or transmission asset fail. Generation kept as reserve cannot be used for dispatch. Batteries have reserve capability (as do some NZ battery options, including pumped hydro).

Instantaneous reserves are an important feature of the New Zealand market. In particular, HVDC transfer can be limited by instantaneous reserve requirements to cover for HVDC failure.

Our assumption for our horizon of 2035+ is that instantaneous reserve requirements will not cause cost differences between with and without NZ Battery scenarios, because:

- Our modelling predicts very significant amounts of Li-ion batteries with a high capability to provide instantaneous reserves
- North Island reserve requirements for the HVDC contingent event will be significantly less once the 1400MW upgrade is completed
- For southwards flow, Lake Onslow in pumping can in effect provide its own reserve cover through setting its turbines to trip.

# 7. Transmission generic assumptions

This section covers generic transmission assumptions. In addition there are specific transmission assumptions for NZ Battery options, detailed in their section.

We assume that the grid upgrades proposed by Transpower in their January 2022 Net Zero Grid Pathways (NZGP) go ahead, and are commissioned prior to 2035.

| HVDC                           | HVDC 4th Cable                               | 1400 MW north, 950 MW south                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Central<br>North Island        | Brownhill-Whakamaru                          | We assume 45% series compensation on both Brownhill Whakamaru circuits, 2025                                                                                                                                                 |  |  |  |  |
| upgrades                       | Brownhill-Pakuranga                          | Brownhill to Pakuranga cable is operated unconstrained from 2025 (once series compensation in place)                                                                                                                         |  |  |  |  |
|                                | Tokaanu-Whakamaru 1&2                        | Duplexed with Goat at 120°C, 2027                                                                                                                                                                                            |  |  |  |  |
|                                | Bunnythorpe-Tokaanu 1&2                      | Duplexed with Goat at 120°C, 2027                                                                                                                                                                                            |  |  |  |  |
|                                | Huntly-Stratford-1                           | Circuit protection upgrade to increase effective capacity,<br>giving this circuit the same capacity as the Stratford-<br>Taumarunui-Te Kowhai-Huntly circuit which is strung on<br>the same double circuit towers, from 2029 |  |  |  |  |
|                                | Special protection scheme                    | Tokaanu intertrip scheme disabled (modelled in SDDP by removing TKU bus split)                                                                                                                                               |  |  |  |  |
|                                | Tactical thermal uprate                      | Ongarue circuit breaker #92 split                                                                                                                                                                                            |  |  |  |  |
| Wairakei<br>Ring               | Te Mihi-Wairakei-1                           | Thermal upgrade to 100°C, 2027                                                                                                                                                                                               |  |  |  |  |
|                                | Te Mihi-Whakamaru-1                          | Thermal upgrade to 100°C, 2027                                                                                                                                                                                               |  |  |  |  |
|                                | Whakamaru-Wairakei-1                         | Thermal upgrade to 100°C, 2027                                                                                                                                                                                               |  |  |  |  |
|                                | Ohakuri-Wairakei-1                           | Duplexed Goat at 120°C, 2027                                                                                                                                                                                                 |  |  |  |  |
|                                | Atiamuri-Ohakuri-1                           | Duplexed Goat at 120°C, 2030                                                                                                                                                                                                 |  |  |  |  |
|                                | Atiamuri-Whakamaru-1                         | Duplexed Goat at 120°C, 2027                                                                                                                                                                                                 |  |  |  |  |
|                                | Edgecumbe interconnector                     | 62.5 MVA (winter/summer/shoulder)                                                                                                                                                                                            |  |  |  |  |
|                                | Special protection scheme                    | Edgecumbe-Kawerau-3 and Kawerau-Ohakuri-1 overload protection scheme                                                                                                                                                         |  |  |  |  |
| Bombay to<br>Otahuhu           | Committed projects                           | New 220 kV bus at Bombay between Huntly and Drury connected into Drury-HLT-1 and Huntly-TAT-2 Remove Arapuni-Bombay and Bombay-Hamilton 110 kV circuits                                                                      |  |  |  |  |
| Additional<br>system<br>splits | Splits on 110 kV system to resolve overloads | Ongarue-Rangitoto-1<br>Mangamaire-Masterton-1<br>Edgecumbe-Kawerau 1 and 2<br>Glenavy-Studholme-2                                                                                                                            |  |  |  |  |

**Table 45:** Transmission generic generation assumptions

# 8. NZ Battery Lake Onslow pumped hydro option

The Lake Onslow pumped hydro scheme is under active investigation: the following assumptions reflect the current state of Lake Onslow design work (MOL = maximum operating level).

|        | Upper<br>storage | Installed | Upper<br>reservoir | Lower reservoir |              |      |         |  |
|--------|------------------|-----------|--------------------|-----------------|--------------|------|---------|--|
|        | Storage          | capacity  | MOL                | Storage         | Location     | MOL  | Pumped? |  |
|        | TWh              | MW        | masl               | Mm <sup>3</sup> |              | masl |         |  |
| Small  | 3                | 500       | 743                | 0               | Negotiations | 62   | No      |  |
| Medium | 5                | 1000      | 765                | 5               |              | 87   | Yes     |  |
| Large  | 7.5              | 1250      | 785                | 10              |              | 86.6 | Yes     |  |

Table 46: Lake Onslow main options

The assumptions below are based on the 'Medium' option.

Negotiations

### 8.2 Upper reservoir

| Elevation | Reservoir Storage | Active storage  | Area            |
|-----------|-------------------|-----------------|-----------------|
| masl      | Mm <sup>3</sup>   | Mm <sup>3</sup> | Km <sup>2</sup> |
| 695       | 246               | -               | 24              |
| 705       | 529               | 283             | 32              |
| 715       | 882               | 637             | 39              |
| 725       | 1,307             | 1,062           | 46              |
| 735       | 1,804             | 1,558           | 53              |
| 745       | 2,365             | 2,120           | 59              |
| 755       | 2,986             | 2,740           | 65              |
| 765       | 3,664             | 3,418           | 71              |

Table 47: Lake Onslow (medium option) upper reservoir dimensions

 Table 48: Lake Onslow (medium option) upper reservoir evaporation

|           | Evaporation |
|-----------|-------------|
|           | mm/month    |
| January   | 120         |
| February  | 96          |
| March     | 67          |
| April     | 39          |
| Мау       | 20          |
| June      | 8           |
| July      | 8           |
| August    | 21          |
| September | 41          |
| October   | 71          |
| November  | 96          |
| December  | 113         |

There is assumed to be no significant seepage loss, and no net inflows as current flows on the Teviot River will need to be maintained.

Groundwater seepage from the Lake Onslow basin for lake levels from 685m to 765m are expected to vary from <0.1m3/s to 0.75m3/s respectively.

### 8.3 Pumping and generating performance

The medium option for Lake Onslow has four 250 MW turbines. Turbines are assumed to:

- Be reversible with fully variable loading such that there is a full range of available dispatches between zero and maximum generation and maximum pump.
- Have a very fast ramp rate relative to the highest hourly resolution used in our economic modelling. Their potential contribution to ancillary services is not modelled (other than as discussed in section 6.8).

The following Lake Onslow pumping and generation assumptions are for when all four 250 MW turbines are in operation, in two modes:

- **Sustained operation**, when the lower reservoir is and its lower pumps are in active use as required to maintain pumping volumes over times, so the production coefficients include the main turbines and lower pumps.
- Arbitrage operation, in which the lower reservoir is operating in closed loop i.e. no interaction with the river or use of the lower pumps, so the production coefficients include the main turbines only. This is a mode of operation that could be used for daily cycling.

So, the **production coefficients** for the turbines in the tables below capture lower pump efficiency when used in sustained operation. The production coefficients include headlosses in both directions due to long waterways. The ratio of pumping and generating production coefficients give the round-trip efficiency, excluding evaporation effects.

| Elev       | vation               | masl         | 695   | 705   | 715   | 725   | 735   | 745   | 755   | 765   |
|------------|----------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| b          | Power<br>consumption | MW           | 1124  | 1115  | 1105  | 1095  | 1084  | 1075  | 1066  | 1056  |
| Pumping    | Total pumping flow   | cumecs       | 156   | 153   | 150   | 147   | 144   | 141   | 138   | 135   |
| Ρ          | Production coeff.    | MW/<br>cumec | 7.20  | 7.29  | 7.37  | 7.45  | 7.53  | 7.62  | 7.72  | 7.82  |
| ng         | Maximum output       | MW           | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  |
| Generating | Total turbine flow   | cumecs       | 206   | 201   | 196   | 191   | 186   | 183   | 179   | 176   |
| Ger        | Production coeff.    | MW/<br>cumec | 4.85  | 4.98  | 5.10  | 5.24  | 5.38  | 5.46  | 5.59  | 5.68  |
| Rοι        | und-trip efficiency  | %            | 67.4% | 68.3% | 69.3% | 70.3% | 71.4% | 71.7% | 72.3% | 72.6% |

Table 49: Lake Onslow (medium option) turbine performance in sustained operation

| Elev       | vation              | masl     | 695   | 705   | 715   | 725   | 735   | 745   | 755   | 765   |
|------------|---------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| b          | Power consumption   | MW       | 1092  | 1084  | 1074  | 1065  | 1055  | 1047  | 1038  | 1029  |
| Pumping    | Total pumping flow  | cumecs   | 156   | 153   | 150   | 147   | 144   | 141   | 138   | 135   |
| đ          | Production coeff.   | MW/cumec | 6.99  | 7.08  | 7.16  | 7.24  | 7.33  | 7.43  | 7.52  | 7.62  |
| ing        | Maximum output      | MW       | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  | 1000  |
| Generating | Total turbine flow  | cumecs   | 206   | 201   | 196   | 191   | 186   | 183   | 179   | 176   |
| Ge         | Production coeff.   | MW/cumec | 4.85  | 4.98  | 5.10  | 5.24  | 5.38  | 5.46  | 5.59  | 5.68  |
| Rou        | Ind-trip efficiency | %        | 69.4% | 70.2% | 71.3% | 72.3% | 73.4% | 73.6% | 74.3% | 74.5% |

Table 50: Lake Onslow (medium option) turbine performance in arbitrage operation

The following turbine parameters are for an elevation of 695 masl and 608m of gross head:

Table 51: Lake Onslow (medium option) turbine parameters

| Capacity                                 | MW    | 250  |
|------------------------------------------|-------|------|
| Generation rated discharge rate per unit | cumec | 51.4 |
| Pumping maximum discharge per unit       | cumec | 39.0 |

In the following table is for sustained mode, and pumping efficiency includes 'lower' pumping up from the Clutha River to the lower reservoir (for the medium Lake Onslow option which has the lower reservoir Negotiations<sup>62</sup>.

| Table 52: Lake Onslow | (medium option) | ) pumphouse parameters |
|-----------------------|-----------------|------------------------|
|-----------------------|-----------------|------------------------|

| Turbines                         |           | Units | 2     | 3     | 4     |
|----------------------------------|-----------|-------|-------|-------|-------|
| Maximum generate (turbined) flow |           | cumec | 104   | 156   | 208   |
| Maximum pump flow                |           | cumec | 78    | 117   | 156   |
| Generation efficiency            |           | %     | 84.2% | 84.2% | 84.2% |
| Pump efficiency                  |           | %     | 86.4% | 86.4% | 86.4% |
| Round trip efficiency            | Average   | %     | 71.0% | 71.0% | 71.0% |
|                                  | When full | %     | 74.5% | 74.5% | 74.5% |

<sup>&</sup>lt;sup>62</sup> Values are based on Negotiation 1000MW, 10 Mm<sup>3</sup> lower reservoir volume option, so these numbers are slightly conservative for our medium 5 Mm<sup>3</sup> option, which has a maximum operating level 0.4m lower, but the difference is negligible.

#### 8.4 Lower reservoir

The medium option for Lake Onslow is for a lower reservoir **Negotiations** The lower reservoir will be raised slightly above the level of the Clutha River, with 'lower' pumps used to fill it. During generating operation, the lower reservoir can be drawn down to river level.

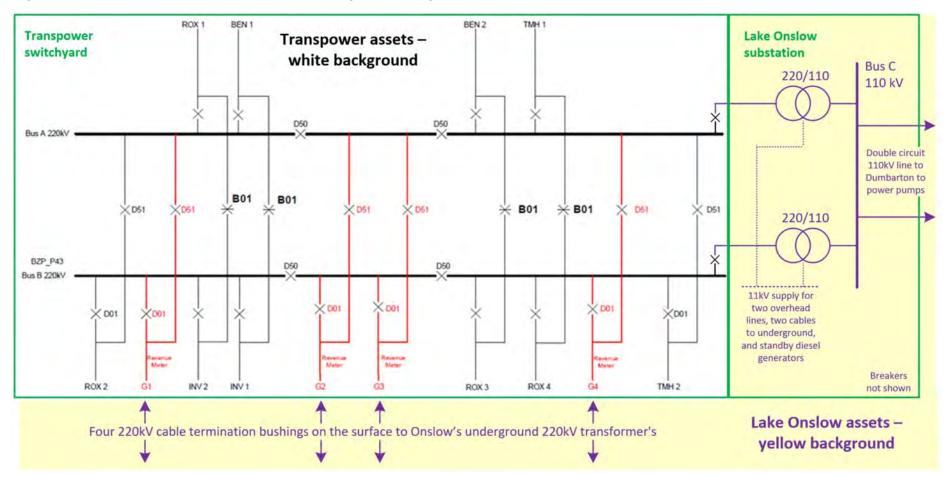
| <b>I ADIE JJ.</b> Lake Olisiow (Illeululli optioli) lowel leselvoli palaliete | Table 53: Lake Onslow ( | (medium optior | ) lower reservoir | parameters |
|-------------------------------------------------------------------------------|-------------------------|----------------|-------------------|------------|
|-------------------------------------------------------------------------------|-------------------------|----------------|-------------------|------------|

| · · · · ·                      | •     | <b>Commercial Information</b> |
|--------------------------------|-------|-------------------------------|
| Lower reservoir size           | Mm3   |                               |
| Maximum operating level        | masl  | 87                            |
| Max flow in (max harvest rate) | cumec | 250                           |
| Lower pumps?                   | Yes   |                               |

## 8.5 Transmission

Transmission assumptions for Lake Onslow are in addition to the generic transmission assumptions presented in section 7.

#### 8.5.1 Grid connection


Transpower has developed, for early modelling purposes, a conceptual Lake Onslow grid connection comprising:

- A new Onslow substation on the surface above the powerhouse (which is deep underground), assumed some 40 Km south-east of Roxburgh substation
- Loop in, loop out connection of Onslow substation to all of the:
  - Invercargill Roxburgh 1 and 2 circuits
  - Roxburgh Three Mile Hill 1 and 2 circuits
- Dismantling the sections of those lines between the diversion points
- New Benmore Onslow double circuit 220 kV line.

**Commercial Information** 

#### 8.6 Scheme overview

Figure 16: Lake Onslow substation conceptual design bus configuration



We assume this conceptual grid connection design, with the following parameters. The relevant codes used here are:

- BEN Benmore
- INV Invercargill
- LO Lake Onslow
- ROX Roxburgh
- TMH Three Mile Hill (west of Dunedin)
- Circuits use suffixes 1, 2...
- Lines (one line of towers can carry one or two circuits) use suffixes A, B...
- Some names use here are not to industry standard and are placeholders to be refined as necessary in future.

| Line name        |           | Tuno           |                             | Comments      | Longth |  |
|------------------|-----------|----------------|-----------------------------|---------------|--------|--|
| Existing         | Proposed  | Туре           | Circuit(s) carried Comments |               | Length |  |
| INV-ROX B        | INV-LO B  | Single circuit | INV-LO-ROX 2                | Diversion in  | 6 km   |  |
| INV-ROX B        | INV-LO B  | Double circuit | INV-LO-ROX 1 & 2            | Diversion in  | 22 km  |  |
| INV-ROX A        | LO-ROX A  | Double circuit | INV-LO-ROX 1 & 2            | Diversion out | 19 km  |  |
| INV-ROX A        | LO-ROX A  | Single circuit | INV-LO-ROX 1                | Diversion out | 3 km   |  |
| <b>ROX-TMH A</b> | LO-TMH A  | Double circuit | ROX-LO-TMH 1 & 2            | Diversion in  | 24 km  |  |
| <b>ROX-TMH A</b> | LO-ROX B  | Double circuit | ROX-LO-TMH 1 & 2            | Diversion out | 22 km  |  |
| -                | BEN -LO A | Double circuit | BEN-LO 1 & 2                | New Build     | 220 km |  |
| INV-ROX B        | -         | Single circuit | INV-ROX 2                   | Removal of    | 12 km  |  |
| INV-ROX A        | -         | Single circuit | INV-ROX 1                   | diverted      | 11 km  |  |
| ROX-TMH A        | -         | Double circuit | ROX-TMH 1 & 2               | sections      | 17 km  |  |

Table 54: Lake Onslow local line and circuit changes

#### **Table 55:** Lake Onslow connection circuit parameters

|          | Summer | Winter | Shoulder | Voltage | R    | Х     |
|----------|--------|--------|----------|---------|------|-------|
|          | MVA    | MVA    | MVA      | kV      | ohms | ohms  |
| INV-LO 1 | 347.1  | 382.2  | 365.0    | 220     | 7.61 | 48.52 |
| INV-LO 2 | 347.1  | 382.2  | 365.0    | 220     | 7.43 | 48.54 |
| LO-ROX 1 | 347.1  | 382.2  | 365.0    | 220     | 1.98 | 14.09 |
| LO-ROX 2 | 347.1  | 382.2  | 365.0    | 220     | 2.05 | 14.93 |
| LO-ROX 3 | 385.2  | 469.8  | 429.8    | 220     | 1.29 | 11.58 |
| LO-ROX 4 | 385.2  | 469.8  | 429.8    | 220     | 1.29 | 11.58 |
| LO-TMH 1 | 385.2  | 469.8  | 429.8    | 220     | 2.97 | 26.74 |
| LO-TMH 2 | 385.2  | 469.8  | 429.8    | 220     | 2.97 | 26.74 |
| BEN-LO 1 | 709.4  | 781.0  | 746.2    | 220     | 7.60 | 67.68 |
| BEN-LO 2 | 709.4  | 781.0  | 746.2    | 220     | 7.60 | 67.68 |

### 8.6.1 HVAC North Island

We assume some additional transmission investments will be made, beyond those in the generic transmission assumptions presented in section 7, where the SDDP modelling and/or Transpower's power system analysis has indicated that they are likely to be economic. We assume these upgrades will be made by 2035, and by duplexing:

- Bunnythorpe-Haywards A and B (BPE-PRT-HAY 1 & 2), primarily to enable southward flow
- Bunnythorpe-Wairakei A (BPE-TNG-RPO-WRK), primarily to enable southward flow.

### 8.6.2 HVDC

We assume that the HVDC link capacity will not be upgraded beyond 1400MW, as to do so would require upgrade of the whole line including the lengthy overhead portions, and would create too great an extended contingent event (ECE) and potentially resilience risk.

We assume that, given that Lake Onslow pump will reduce spill from North Island wind and solar, the HVDC southwards flow will be maximised:

- Southwards flow will increase from 950MW (68% of 1400MW) to 1050MW (75%) with the Bunnythorpe-Haywards duplexing identified above
- Additional increase towards the 1400 MW technical maximum southwards, to 1300MW (93%) south, will be achieved with lower North Island voltage management, e.g. installation of dynamic reactive plant such as StatComs.

Transpower has cautioned that this assumed ability to increase of the HVDC link southwards capacity has not been studied and could, for example, raise issues for the Benmore-Twizel and/or Aviemore-Waitaki-Livingstone lines. Nevertheless we need an NZ Battery working assumption so – accepting that this will need detailed study if we are to proceed – we assume the above HVDC southwards expansion for modelling purposes.

### 8.6.3 HVAC South Island

Onslow when generating requires transmission capacity to be upgraded between the Roxburgh region and the Waitaki Valley. There are a number of options for this, and a detailed analysis will need to be undertaken of which option is most economic: we assume for modelling purposes that this will be achieved by:

- A new double-circuit 220 kV line from the Lake Onslow substation directly to Benmore
- Duplexing of the Aviemore-Benmore line, primarily to enable pumping.

Onslow when pumping may require grid support. To date, power system analysis of Onslow pumping has been limited to fixed speed synchronous turbines, but the Onslow design is based on variable speed turbines<sup>63</sup>. The Transpower analysis for synchronous turbines indicates that pumping under certain grid configurations, generation and load patterns, and pumping load combinations could breach system transient stability limits, and to maintain grid stability could require dynamic reactive plant of some 500 MVars (at a South Island site other than Onslow), possibly as synchronous condensers.

<sup>&</sup>lt;sup>63</sup> To conduct such power system analysis, Transpower needs a DigSILENT model of the turbines, which TRM has provided for synchronous turbines but we do not yet have a model for variable speed turbines.

Variable speed turbines offer a transient response advantage compared to fixed speed synchronous turbines due to significantly faster dynamic response, and can offer enhanced system stability support. Therefore, it is expected that the additional reactive support required by the grid would be reduced where variable speed machines are used. Further, the cases of grid configurations, generation and load patterns, and pumping load combinations that place stability limits at risk are expected to be rare. Use of variable speed machines would allow the pumps to be unloaded to a safe pumping load without requiring the pumps to be shutdown. Such unloading may be facilitated by Special Protection Schemes or similar, so we have assumed:

• Special protection schemes (NZ Battery estimate).

This is an NZ Battery working assumption pending the full power system analysis by Transpower.

### 8.6.4 Summary of transmission assumptions

These are in addition to the generic transmission assumptions tabulated in section 7:

|                   | Transmission investment specific to Lake Onslow         |                                                                |  |  |  |  |
|-------------------|---------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|                   | Substation                                              | Lake Onslow substation                                         |  |  |  |  |
| Connection        | Circuits diverted into Onslow                           | Invercargill – Roxburgh A & B,<br>Roxburgh – Three Mile Hill A |  |  |  |  |
|                   | Increase transfer Roxburgh region to the Waitaki Valley | New Onslow to Benmore double-circuit 220 kV line               |  |  |  |  |
| HVAC South Island | Ensure grid stability when Onslow is pumping            | Special protection schemes                                     |  |  |  |  |
| HVDC              | Increase southwards flow                                | 1300 MW southwards                                             |  |  |  |  |
|                   | Bunnythorpe-Haywards 1 and 2                            | Duplexed                                                       |  |  |  |  |
| HVAC North Island | Bunnythorpe-Wairaki 1                                   | Duplexed                                                       |  |  |  |  |
|                   | Brownhill-Whakamaru 1 and 2                             | 45% series compensation                                        |  |  |  |  |

 Table 56:
 Lake Onslow specific transmission assumptions

## 8.7 Host system interaction

The Lake Onslow scheme would interact physically and possibly commercially with Contact Energy which owns and operates the Clutha River power system including the Lake Hawea control structure, Clyde Dam and Roxburgh Dam.

The SDDP model maximises national benefit, i.e. it finds a least cost dispatch, so implicitly assumes that Contact Energy and NZ Battery would be operating together for the national good.

# 9. NZ Battery Upper Moawhango pumped hydro option

The primary reference for this scheme is Stantec's Other Pumped Hydro and Other Hydro Options Initial Desktop Screening Study, prepared for MBIE, March 2022 (revision 3 of 23 May 2022), referred to as 'Site 1'.

### 9.1 Scheme overview

The scheme includes:

- Upper Moawhango reservoir with new dam to contain it
- Horizontal tunnel to a head-pond
- Tunnel from the headpond to an undergrpound pump/power station

Commercial Information

**Commercial Information** 

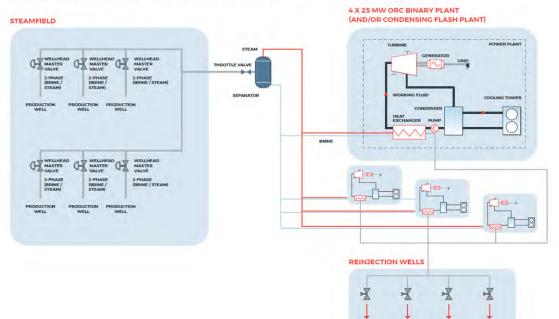
Table 57: Upper Moawhango summary of key parameters

| Upper reservoir total storage | Mm <sup>3</sup> | 1714 |
|-------------------------------|-----------------|------|
| Upper reservoir live storage  | Mm <sup>3</sup> | 1199 |
| Storage provided              | TWh             | 2.75 |

The storage provided in the table above includes the energy provided from all downstream generation, owned by Genesis and Mercury.

#### NZ Battery geothermal reserve option 10.

#### **Overview** 10.1


Key features of the geothermal reserve option are based on those recommended by WSP and include:

- A total of 400 MW of new geothermal plant are developed, specifically designed to enable ramping flexibility
- Each plant will be 100 MW comprising four 25 MW units. One unit will always be . operating in baseload. In an emerging dry year, wells are slowly de-throttled and the other generation units brought progressively online.
- It takes two weeks to ramp up to full capacity across all units, and the same time to ramp back down
- The plant are spread across several greenfield geothermal sites in the Taupo volcanic • zone (the zone includes the south-eastern Waikato and central Bay of Plenty).

Figure 21: Geothermal reserve scheme overview (from WSP)

Typical Geothermal NZ Battery Site (Integrated Steamfield and Plant)

 Normal year turned down state: all steamfield wellhead and reinjection master valves turned down and 25MW of 100MW available generation plant normally running Dry year preparation and ramp up gradually open steamfield wellnead master valves and bring wells to 100% flow (in parallel with power plant warm up and preparation to run plant at full capacity)
 Dry year state: run plant at 100% (or a chosen mid-range point to suit the dry year requirement)



# **10.2 Modelling assumptions**

|                | Baseload | MW                  | 100 MW        |
|----------------|----------|---------------------|---------------|
| Capacity       | Flexible | MW                  | 300 MW        |
|                | Total    | MW                  | 400 MW        |
| Domn roto      | Up       | MW / time           | 150 MW / week |
| Ramp rate      | Down     | MW / time           | 150 MW / week |
|                | Location | Taupo volcanic zone |               |
| Operating mode |          |                     | SOS Mode      |

Table 58: NZ Battery geothermal reserve modelling parameters

For SOS Mode the hydro risk trigger used is the \$80 MWh Waitaki water offer curve, reflecting the state of the major storage in the South Island.

The NZ Battery geothermal reserve, when modelled, requires geothermal resource which removes its availability to the market. It is assumed that the 400MW of geothermal reserve targets higher gross emissions fields first, to allow full baseload market geothermal plant preferential use of the lower emissions resources.

Given our 50% carbon reinjection success rate assumption, this means that the full 400 MW of low, medium and high emissions resource that does not have successful re-injection is used for geothermal reserve, and the fields with successful reinjection are used for market baseload geothermal, also totalling 400 MW. The geothermal reserve can then, for modelling convenience, be considered as a single emissions tranche with a weighted average emissions rate:

| Emissions tranche       |            | Geothermal reserve capacity | Remaining market capacity |
|-------------------------|------------|-----------------------------|---------------------------|
| Tranche                 | Kg C / MWh | MW                          | MW                        |
| Re-injection            | 0          | -                           | 400 MW                    |
| No re-injection average | 100        | 400 MW                      | -                         |

Table 59: NZ Battery geothermal reserve option emissions tranches

Geothermal is assumed to have zero base VOM, but will have a VOM reflecting the emissions and carbon charge:

Table 60: NZ Battery geothermal reserve VOM

|                             |            | 2021 | 2035 | 2050 | 2065 |
|-----------------------------|------------|------|------|------|------|
| VOM excluding carbon charge | 0          |      |      |      |      |
| Emissions                   | Kg C / MWh | 100  |      |      |      |
| VOM                         | \$ / MWh   | 3    | 17   | 26   | 40   |

While there will be some start-up costs, we assume that start-ups occur sufficiently frequently that this in included as part of the FOM.

### **10.3 Transmission implications**

Transmission export is required for four new 100MW geothermal generation stations, spread across several greenfield geothermal sites in the Taupo volcanic zone.

We assume each will require a connection substation, with an average of 10 to 20 Km of diversions of the nearest 220 kV line. Some of the geothermal generation stations could be close enough to a line to require no diversion, some required diversions could be longer.

Transpower has identified two upgrades that may be required in addition to those in its current NZGP, depending on geothermal reserve generation locations, the location of biomass option in a portfolio solution, and other market generation investments:

- Reconductoring the 115 Km Ohakuri-Edgecumbe-A line (as may be required for the biomass option)
- Reconductoring the 220 Km Bunnythorpe-Wairakei-A line.

# 11. NZ Battery biomass option

### 11.1 Overview

Key features of the biomass option are based on those recommended by WSP, which are, converted to potential electrical terms where appropriate:

- A stockpile of white logs (debarked tree trunks) is kept at the generation site, with a stockpile when full sufficient for 1 TWh of generation output
- Logs are harvested and supplied to the stockpile at a steady rate of 1000 tonnes (about 46 trucks) daily through a routine supply contract. This daily rate can, with three months' notice, be flexed up by 50% through a combination of flex in the routine supply contract chain and purchasing ready-for-export logs
- There would be 500 MW of log-fired generation on site, consisting of two 250 MW Rankine cycle plant, for which the logs would be chipped 'just in time'
- The maximum lifetime of a log in the stockpile is three years, within which time they would need to be burned for generation or passed on to another, higher-value use
- An alternative option has been considered (illustrated below), which would utilise torrefied wood a more heavily processed biomass fuel. However, this is not being modelled, to focus on the preferred option.
- The generation site would balance the proximity to the forest resource with the availability of land transport and transmission infrastructure. Many areas could be possible for this, but for modelling purposes we will assume a site in the central North Island.

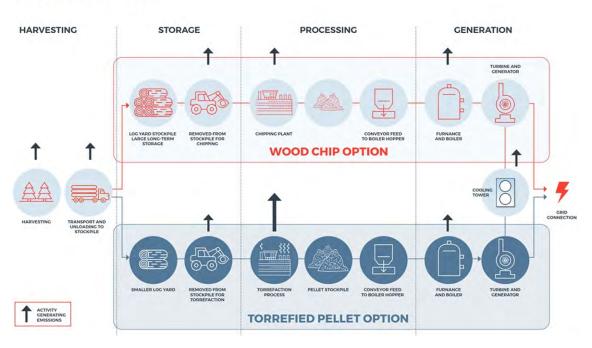



Figure 22: Biomass scheme overview (from WSP)

**Bio Energy Process Options** 

### **11.2 Modelling assumptions**

|                           |       | Per              | F     | Routine inflo   | Maximum   |           |
|---------------------------|-------|------------------|-------|-----------------|-----------|-----------|
|                           |       | tonne of<br>logs | Day   | Three<br>months | Year      | stockpile |
| Log stockpile<br>lifetime | Years |                  |       |                 |           | 3         |
| Log supply                | t     | 1                | 1,000 | 91,000          | 370,000   | 1,100,000 |
| Energy in logs            | GJ/t  | 10.3             |       |                 |           |           |
| Energy in gross           | MWh   | 2.85             | 2,900 | 260,000         | 1,000,000 | 3,100,000 |
| Chipping loss             | %     | 0.18%            |       |                 |           |           |
| Rankine efficiency        | %     | 32%              |       |                 |           |           |
| Potential generation      | MWh   | 0.91             | 910   | 82,000          | 330,000   | 980,000   |

**Table 61:** Biomass scheme stock and flow modelling parameters

In addition to the routine supply as above, we assume that supply can be flexed up by 50% through diverting logs from other uses e.g. export. The costs and prices for routine and flexup supply are shown below. Unused logs, which would almost always be from the routine supply after their three-year stock life, have a resale value.

#### Table 62: Biomass scheme SRMC

|                     |          | Routine | Flex-up |  |
|---------------------|----------|---------|---------|--|
| Maximum per day     | t        | 1000    | 500     |  |
| Log price delivered | \$ / t   | \$ 112  | \$ 136  |  |
| VOM                 | \$ / MWh | \$ 3    |         |  |
| SRMC                | \$ / MWh | \$ 120  | \$ 150  |  |

Table 63: Biomass scheme unused log resale price

| Reduction relative to routine<br>price | %        | 40 %  |  |
|----------------------------------------|----------|-------|--|
| Unused log resale price                | \$ / MWh | \$ 74 |  |

#### Table 64: Biomass scheme modelling parameters

| Generation     | 500 MW           |  |  |
|----------------|------------------|--|--|
| Location       | North Island     |  |  |
| Operating mode | Flexibility mode |  |  |

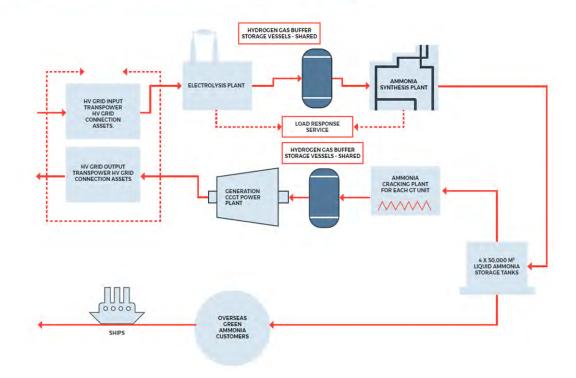
In the NZ Battery biomass option, the standard market green peaker assumptions are used in addition.

## **11.3 Transmission implications**

As noted above, the biomass generation site would balance the proximity to the forest resource with the availability of land transport and transmission infrastructure. Many areas could be possible for this, but for modelling purposes we assume a site in a plantation forest area of the central North Island, in the eastern Waikato or Southern Bay of Plenty region.

There will need to be a strong substation to support the 500 MW of generation, and we assume three possibilities for connecting this substation to the 220kV grid, accepting that there could be others:

- New 600MW double circuit line 220kV line of 50 Km to 70Km, to the Whakamaru or Wairakei substation
- Reconductoring the 115 Km Ohakuri-Edgecumbe-A line (as may be required for the geothermal reserve option).


# 12. NZ Battery hydrogen and ammonia option

### 12.1 Overview

Key features of the hydrogen-ammonia option are based on those recommended by WSP in its Other Technologies Feasibility Study:

- Electrolysis of water into hydrogen using a fully flexible electrolyser, with buffer storage of hydrogen equivalent to about twelve hours of production at full electrolyser output
- Ammonia synthesis plant, sized to match the electrolyser plant hydrogen output. Ammonia production which can drop to part-load rapidly, or turn off with a two-day restart time
- Bulk ammonia storage using above ground containment tanks, plus supplementary storage to support an export terminal
- Cracking of ammonia back into hydrogen to feed electricity generation through two 75 MW CCGT plants
- Most of the response is provided by turning off the electrolyser, but significant response also from the hydrogen-fuelled generation.

Figure 23: Hydrogen-ammonia scheme overview (from WSP)



Hydrogen Stream - Base Case envelope process flow diagram

# **12.2 Modelling assumptions**

Table 65: Hydrogen-ammonia scheme cumulative efficiencies

|             |     | Energy from grid | Electrolysis | Hydrogen storage | Ammonia synthesis | Ammonia storage | Ammonia cracking | Hydrogen storage | Generation |
|-------------|-----|------------------|--------------|------------------|-------------------|-----------------|------------------|------------------|------------|
| Capacity    | MW  |                  | 350<br>MW    |                  | 19<br>MW          |                 |                  |                  | 150<br>MW  |
| Efficiency  | %   |                  | 66%          |                  | 84%               |                 | 77%              |                  | 60%        |
|             |     |                  |              |                  |                   |                 |                  |                  |            |
| Via ammonia | MWh | 369              |              | 231              |                   | 194             |                  | 149              | 90         |
| storage     | %   | 100%             |              | 66%              |                   | 53%             |                  | 40%              | 24%        |

The hydrogen-ammonia option provides for up to 200,000m<sup>3</sup> of liquid ammonia storage. This is equivalent to around 380 MWh of potential generation from the CCGT. Production is assumed to be stored and/or provided to the CCGT as priority. 'Spill' from continued production when storage is full is diverted to export (via supplementary storage).

In setting the electrolyser bid and CCGT offer prices into the electricity market, we have assumed:

- Export-parity pricing, given our assumption that excess green ammonia is exported
- A liquid market develops for this product by 2035
- A green ammonia price (distinct from costs):
  - Derived from IEA projections for green ammonia and international renewable electricity costs
  - Determined by the capability of technology investments made in 2030, with those investments being necessary to meet increasing demand for green ammonia - even as green ammonia production technology improves - and hence being the marginal price setter through-out our modelled period
  - Declining over time, on the assumption the price of the renewable energy used to produce it declines over time
- The international ammonia price informs the willingness to pay for electricity to produce it, reflecting
  - An exchange rate of 0.65 NZD/USD
  - The efficiency of the production process
  - An assumption that electricity comprises 90% of short-run marginal costs
- Similarly, the international ammonia price informs the CCGT offer price, adjusted for the exchange rate and cracking and generation efficiency.

This results in the bid and offer prices in the table below.

There is massive uncertainty around green ammonia prices into the future. The numbers below are far from definitive, but provide a reasoned estimate for modelling purposes, with the IEA references providing a touchstone.

|                                      |                      | 2035   | 2050   | 2065   |
|--------------------------------------|----------------------|--------|--------|--------|
| International electricity input cost | USD/MWh              | \$ 60  | \$ 35  | \$ 25  |
| International ammonia price (export) | USD/t <sub>NH3</sub> | \$ 750 | \$ 500 | \$ 400 |
| Electrolyser bid price               | NZD/MWh              | \$ 92  | \$ 61  | \$ 49  |
| CCGT offer price                     | NZD/MWh              | \$ 400 | \$ 266 | \$ 213 |

Table 66: Hydrogen-ammonia scheme prices

# **12.3 Transmission implications**

The hydrogen-ammonia option is assumed to be located close to a port and transmission. Transmission is required to service a range between a 370 MW load and 150 MW generation.

# 13. NZ Battery portfolio options

The NZ Battery portfolio options are to explore a portfolio of the other three options (geothermal reserve, biomass, and hydrogen-ammonia) as:

- Individual options are size- or capability-constrained in meeting the range of dry year scenarios that could unfold
- If the Government were to procure such options, it may be through a form of technologyagnostic tender process, with a combination of solutions as a likely or at least possible outcome
- A portfolio might also reflect a market or regulated provision of such services, or some combination thereof.

For modelling, we consider the following three portfolio options:

| Portfolio | Geothermal reserve | Biomass | Hydrogen-<br>ammonia | NZAS load curtailment | Gross benefit relative to:    |
|-----------|--------------------|---------|----------------------|-----------------------|-------------------------------|
| 1         | $\checkmark$       | ~       | ~                    | ×                     | Counterfactual<br>(Tiwai out) |
| 2         | $\checkmark$       | ~       | ×                    | ~                     | NZAS-in<br>base case          |
| 3         | $\checkmark$       | ~       | ×                    | ×                     | Counterfactual<br>(Tiwai out) |

Table 67: Portfolio options considered

Portfolio 1 includes all three individual non-hydro NZ Battery options identified.

Portfolio 2 explores how a portfolio solution might change if NZAS remains in:

• NZAS already has a load curtailment capability, of some 80 MW for 130 days

- We assume that this level of response will continue in the 'NZAS-in' base case
- In Portfolio 2, we assume also that NZ Battery has contracted with NZAS for the same magnitude of response but triggered at a lower risk level.
- For NZAS load curtailment response trigger we use the Waitaki water offer curve, reflecting the state of the major storage in the South Island, at the \$500 level for the NZAS-in base case, and at the \$250 level for Portfolio 2 (this is the same SOS Mode approach used for geothermal reserve, but with higher prices for more conservative operation).

Portfolio 3 has neither the hydrogen-ammonia nor NZAS load curtailment present, to explore the value of significant demand response in a portfolio solution.

# 14. Generation investment stacks

This section presents our assumptions on specific generation investment and retirements. These are used explicitly in the SDDP modelling, and inform some of the generic generation assumptions.

### 14.1 Fossil fuel retirement

| Plant                               | Туре                   | Capacity (MW) | Retirement year<br>(1 January) |
|-------------------------------------|------------------------|---------------|--------------------------------|
| Taranaki Combined Cycle             | CCGT                   | 380           | 2025                           |
| Huntly C1                           | Coal/Gas Steam turbine | 243           | 2025                           |
| Huntly C2                           | Coal/Gas Steam turbine | 243           | 2025                           |
| Huntly C4                           | Coal/Gas Steam turbine | 243           | 2025                           |
| Whirinaki                           | Diesel                 | 155           | 2029                           |
| МсКее                               | OCGT                   | 100           | 2033                           |
| Edgecumbe                           | Cogeneration           | 10            | 2033                           |
| E3p                                 | CCGT                   | 403           | 2035                           |
| Huntly P40                          | OCGT                   | 50            | 2035                           |
| Stratford Open Cycle Gas<br>Turbine | OCGT                   | 200           | 2035                           |
| Junction Road                       | OCGT                   | 100           | 2035                           |
| Bream Bay Peaker                    | Diesel                 | 9             | 2035                           |

**Table 68:** Fossil fuel generation retirement assumptions (SDDP)

### 14.2 Wind

Wind specific generation opportunities assumptions use the generic CAPEX (with transmission CAPEX added), FOM and VOM from section 3.2, and add:

|              | Capacity | Location | Available     | Transmiss | sion costs |
|--------------|----------|----------|---------------|-----------|------------|
| Name         | Max MW   | GIP      | Start of year | \$/kW     | \$M        |
| Turitea      | 221.4    | LTN220   | 2022 fixed    | 212       | 47         |
| Harapaki     | 176.3    | WRK220   | From 2023     | 165       | 29         |
| MtCass       | 92.4     | WPR066   | From 2023     | 115       | 11         |
| Puketoi      | 300      | LTN220   | From 2025     | 444       | 133        |
| CastleHill   | 500      | LTN220   | From 2026     | 220       | 110        |
| KaiwDwns     | 200      | NMA220   | From 2025     | 203       | 41         |
| Awhitu       | 25       | HLY220   | From 2025     | 141       | 4          |
| CentralWind  | 150      | BPE220   | From 2025     | 293       | 44         |
| MtMunro      | 100      | MGM110   | From 2026     | 250       | 25         |
| Waitahora    | 150      | LTN220   | From 2026     | 490       | 73         |
| KaimaiWind   | 100      | HAM110   | From 2026     | 186       | 19         |
| Flemington   | 100      | FHL110   | From 2026     | 340       | 34         |
| Mahiner_s2   | 150      | HWB220   | From 2026     | 321       | 48         |
| Hurunui      | 80       | ISL220   | From 2026     | 567       | 45         |
| BOPTaupo_1   | 300      | TRK220   | From 2026     | 102       | 31         |
| Kaiwaikawe   | 75       | MPE110   | From 2026     | 103       | 8          |
| Northland_1  | 300      | MDN220   | From 2026     | 484       | 145        |
| Waikato_1    | 180      | OHW220   | From 2026     | 434       | 78         |
| Waikato_2    | 200      | OHW220   | From 2026     | 355       | 71         |
| Marlboroug_1 | 50       | BLN110   | From 2026     | 201       | 10         |
| Wellington_1 | 15       | WIL220   | From 2026     | 341       | 5          |
| Manawatu_1   | 150      | BPE220   | From 2026     | 381       | 57         |
| BOPTaupo_2   | 300      | WRK220   | From 2026     | 100       | 30         |
| Wellington_2 | 100      | HAY220   | From 2026     | 261       | 26         |
| Auckland_1   | 100      | HPI220   | From 2026     | 509       | 51         |
| Manawatu_2   | 150      | BPE220   | From 2026     | 246       | 37         |
| Auckland_2   | 100      | HPI220   | From 2026     | 312       | 31         |
| Northland_2  | 150      | MDN220   | From 2026     | 260       | 39         |
| CentralPla_1 | 250      | TKU220A  | From 2026     | 118       | 30         |
| BOPTaupo_3   | 150      | WRK220   | From 2026     | 285       | 43         |
| Eastland_1   | 50       | TUI110   | From 2026     | 65        | 3          |
| Northland_3  | 100      | MDN220   | From 2026     | 319       | 32         |

 Table 69: Wind specific generation opportunities assumptions

|              | Capacity | Location | Available     | Transmiss | sion costs |
|--------------|----------|----------|---------------|-----------|------------|
| Name         | Max MW   | GIP      | Start of year | \$/kW     | \$M        |
| BOPTaupo_4   | 100      | WRK220   | From 2026     | 603       | 60         |
| Southland_1  | 100      | NMA220   | From 2026     | 219       | 22         |
| BOPTaupo_5   | 75       | WRK220   | From 2026     | 320       | 24         |
| FarNorth_1   | 75       | MDN220   | From 2026     | 454       | 34         |
| Otago_1      | 500      | ROX220   | From 2026     | 166       | 83         |
| Waikato_3    | 20       | WRK220   | From 2026     | 256       | 5          |
| Southland_2  | 25       | NMA220   | From 2026     | 441       | 11         |
| FarNorth_2   | 75       | MDN220   | From 2026     | 487       | 36         |
| Eastland_2   | 75       | TUI110   | From 2026     | 691       | 52         |
| Southland_3  | 150      | NMA220   | From 2026     | 200       | 30         |
| Waikato_4    | 50       | WKM220   | From 2026     | 361       | 18         |
| Wairarapa_1  | 100      | MGM110   | From 2026     | 582       | 58         |
| Eastland_3   | 200      | TUI110   | From 2026     | 508       | 102        |
| Otago_2      | 300      | HWB220   | From 2026     | 186       | 56         |
| Manawatu_3   | 150      | BPE220   | From 2026     | 144       | 22         |
| Southland_4  | 100      | NMA220   | From 2026     | 348       | 35         |
| BOPTaupo_6   | 75       | WRK220   | From 2026     | 498       | 37         |
| Marlboroug_2 | 75       | BLN110   | From 2026     | 392       | 29         |
| Southland_5  | 50       | NMA220   | From 2026     | 492       | 25         |
| SouthernWa_1 | 100      | BPE220   | From 2026     | 433       | 43         |
| Southland_6  | 150      | NMA220   | From 2026     | 449       | 67         |
| CentralPla_2 | 150      | TNG220   | From 2026     | 192       | 29         |
| Southland_7  | 100      | NMA220   | From 2026     | 529       | 53         |
| FarNorth_3   | 200      | MDN220   | From 2026     | 545       | 109        |
| Waikato_5    | 75       | WKM220   | From 2026     | 115       | 9          |
| Canterbury_1 | 15       | ISL220   | From 2026     | 384       | 6          |
| Otago_3      | 150      | HWB220   | From 2026     | 210       | 31         |
| BOPTaupo_7   | 10       | ARI110A  | From 2026     | 774       | 8          |
| WestCoast_1  | 75       | DOB110   | From 2026     | 353       | 26         |
| Northland_4  | 100      | MPE110   | From 2026     | 639       | 64         |
| Otago_4      | 150      | HWB220   | From 2026     | 634       | 95         |
| BOPTaupo_8   | 150      | WRK220   | From 2026     | 195       | 29         |
| Northland_5  | 150      | MDN220   | From 2026     | 348       | 52         |

|              | Capacity | Location | Available     | Transmiss | sion costs |
|--------------|----------|----------|---------------|-----------|------------|
| Name         | Max MW   | GIP      | Start of year | \$/kW     | \$M        |
| Manawatu_4   | 100      | BPE220   | From 2026     | 362       | 36         |
| Canterbury_2 | 150      | ISL220   | From 2026     | 479       | 72         |
| Canterbury_3 | 100      | ISL220   | From 2026     | 647       | 65         |
| Eastland_4   | 150      | TUI110   | From 2026     | 1110      | 166        |
| CentralPla_3 | 125      | TKU220A  | From 2026     | 618       | 77         |
| Taranaki_1   | 100      | SFD220   | From 2026     | 279       | 28         |
| Wellington_3 | 100      | LTN220   | From 2026     | 321       | 32         |
| Taranaki_2   | 200      | SFD220   | From 2026     | 224       | 45         |
| Northland_6  | 100      | MDN220   | From 2026     | 207       | 21         |
| Auckland_3   | 125      | HLY220   | From 2026     | 363       | 45         |
| SouthernWa_2 | 150      | BPE220   | From 2026     | 422       | 63         |
| HawkesBay_1  | 100      | RDF220   | From 2026     | 373       | 37         |
| Auckland_4   | 150      | HLY220   | From 2026     | 392       | 59         |
| Canterbury_4 | 200      | ISL220   | From 2026     | 247       | 49         |
| Taranaki_3   | 200      | SFD220   | From 2026     | 173       | 35         |
| Manawatu_5   | 300      | BPE220   | From 2026     | 110       | 33         |
| TOTAL        | 11,285   |          |               |           |            |

### 14.2.1 Repowering of existing wind farms

In our time horizon, we can expect many existing wind-farms to be repowered, probably with a higher capacity as technology advances.

| Name         | Capacity | Location | Available     | Transn | nission |
|--------------|----------|----------|---------------|--------|---------|
| Name         | Max MW   | GIP      | Start of year | \$/kW  | \$M     |
| MillCrk_Rpwr | 105      | WIL220   | 2044 fixed    | 35     | 4       |
| TaraW1_Rpwr  | 100.8    | BPE220   | 2029 fixed    | 35     | 4       |
| TaraW2_Rpwr  | 140      | LTN220   | 2034 fixed    | 35     | 5       |
| TaraW3_Rpwr  | 125      | TWC220   | 2037 fixed    | 35     | 4       |
| TeApiti_Rpwr | 220      | WDV110   | 2034 fixed    | 35     | 8       |
| TRrHau_Rpwr  | 82       | TWC220   | 2041 fixed    | 35     | 3       |
| TRrHau3_Rpwr | 82       | TWC220   | 2041 fixed    | 35     | 3       |
| TRrHau4_Rpwr | 81       | TWC220   | 2041 fixed    | 35     | 3       |
| TeUku_Rpwr   | 110      | HAM110   | 2041 fixed    | 35     | 4       |
| WstWnd_Rpwr  | 250      | WIL220   | 2039 fixed    | 35     | 9       |
| Mahiner_Rpwr | 50       | HWB220   | 2041 fixed    | 35     | 2       |
| WhtHII_Rpwr  | 115      | NMA220   | 2037 fixed    | 35     | 4       |

| Table 70: | Wind | specific | repowerina | assumptions |
|-----------|------|----------|------------|-------------|
|           |      |          |            |             |

## 14.3 Utility solar

Utility solar specific generation opportunities assumptions use the generic CAPEX, FOM and VOM from section 6.4.1, and add:

| Nama        | Capacity | Location | Available     |
|-------------|----------|----------|---------------|
| Name        | Max MW   | GIP      | Start of year |
| Solar_OHA_1 | 200      | OHA220   | From 2025     |
| Solar_OHC_1 | 200      | OHC220   | From 2025     |
| Solar_OHB_1 | 200      | OHB220   | From 2025     |
| Solar_BEN_1 | 200      | BEN220   | From 2025     |
| Solar_AVI_1 | 200      | AVI220   | From 2025     |
| Solar_STK_1 | 200      | STK066   | From 2025     |
| Solar_KAW_1 | 200      | KAW110   | From 2025     |
| Solar_CYD_1 | 200      | CYD220   | From 2025     |
| Solar_WHI_1 | 180      | WHI220   | From 2025     |
| Solar_ARG_1 | 100      | ARG110   | From 2025     |
| Solar_BLN_1 | 140      | BLN110   | From 2025     |
| Solar_TWH_1 | 200      | TWH220   | From 2025     |
| Solar_GLN_1 | 200      | GLN220   | From 2025     |
| Solar_ASB_1 | 200      | ASB066   | From 2025     |
| Solar_WTU_1 | 200      | WTU220   | From 2025     |
| Solar_RDF_1 | 200      | RDF220   | From 2025     |
| Solar_BOB_1 | 200      | BOB110   | From 2025     |
| Solar_WHU_1 | 120      | WHU110   | From 2025     |
| Solar_HUI_1 | 120      | HUI110   | From 2025     |
| Solar_SVL_1 | 200      | SVL220   | From 2030     |
| Solar_ISL_1 | 200      | ISL066   | From 2030     |
| Solar_ISL_2 | 200      | ISL066   | From 2030     |
| Solar_ISL_3 | 200      | ISL066   | From 2030     |
| Solar_MAN_1 | 200      | MAN220   | From 2030     |
| Solar_LTN_1 | 160      | LTN220   | From 2030     |
| Solar_BPE_1 | 160      | BPE220   | From 2030     |
| Solar_HLY_1 | 200      | HLY220   | From 2030     |
| Solar_HLY_2 | 200      | HLY220   | From 2030     |
| Solar_KPU_1 | 120      | KPU066   | From 2030     |
| Solar_BRB_1 | 120      | BRB220   | From 2030     |
| Solar_TNG_1 | 120      | TNG220   | From 2030     |

Table 71: Utility solar specific generation opportunities assumptions

| Nome        | Capacity | Location | Available     |
|-------------|----------|----------|---------------|
| Name        | Max MW   | GIP      | Start of year |
| Solar_OAM_1 | 120      | OAM110   | From 2030     |
| Solar_TMK_1 | 100      | TMK110   | From 2030     |
| Solar_WRK_1 | 100      | WRK220   | From 2030     |
| Solar_CUL_1 | 60       | CUL220   | From 2030     |
| Solar_ASY_1 | 80       | ASY066   | From 2030     |
| Solar_HWB_1 | 200      | HWB110   | From 2030     |
| Solar_MST_1 | 120      | MST110   | From 2030     |
| Solar_HAM_1 | 200      | HAM220   | From 2030     |
| Solar_BRY_1 | 200      | BRY066   | From 2030     |
| Solar_FKN_1 | 140      | FKN110   | From 2030     |
| Solar_ARI_1 | 100      | ARI110A  | From 2030     |
| Solar_HIN_1 | 60       | HIN110   | From 2030     |
| Solar_NMA_1 | 120      | NMA220   | From 2034     |
| Solar_INV_1 | 200      | INV220   | From 2034     |
| Solar_TKR_1 | 180      | TKR110   | From 2034     |
| Solar_CST_1 | 140      | CST110   | From 2034     |
| Solar_TMU_1 | 80       | TMU110   | From 2034     |

## 14.4 Geothermal

Geothermal specific generation opportunities assumptions use the generic CAPEX, FOM and VOM from section 6.5, and add:

|              | Capacity | Location | Available     | Emissions  |
|--------------|----------|----------|---------------|------------|
| Name         | Max MW   | GIP      | Start of year | Kg C / MWh |
| Tauhara2a    | 168      | WRK220   | 2021 fixed    | 61         |
| Tauhara2b    | 82       | WRK220   | 2026 fixed    | 61         |
| Ngawha4      | 25       | KOE110   | From 2031     | 0          |
| Mangakino    | 25       | WKM220   | From 2030     | 0          |
| Mokai4       | 25       | WRK220   | From 2030     | 61         |
| Ngatamariki2 | 50       | WRK220   | From 2030     | 61         |
| Rotokawa3    | 50       | WRK220   | From 2030     | 61         |
| Kawerau2     | 50       | KAW220   | From 2030     | 0          |
| Rotoma1      | 25       | EDG220   | From 2030     | 0          |
| TokaanuGeo1  | 20       | TKU220A  | From 2030     | 0          |
| Tikitere1    | 50       | TRK220   | From 2030     | 0          |
| Taheke1      | 25       | EDG220   | From 2030     | 0          |
| Reporoa1     | 25       | WRK220   | From 2030     | 0          |
| Tauhara3     | 30       | WRK220   | From 2034     | 61         |
| Horohoro     | 5        | TRK220   | From 2034     | 0          |
| AtiamuriGeo  | 5        | ATI220   | From 2034     | 0          |
| Rotokawa4    | 50       | WRK220   | From 2034     | 0          |
| TokaanuGeo2  | 100      | TKU220B  | From 2034     | 116        |
| Tikitere2    | 50       | TRK220   | From 2034     | 116        |
| Taheke2      | 25       | TRK220   | From 2034     | 0          |
| Reporoa2     | 25       | WRK220   | From 2034     | 116        |
| Ngawha5      | 25       | KOE110   | From 2034     | 0          |
| Taheke3      | 25       | TRK220   | From 2034     | 116        |
| Reporoa3     | 25       | WRK220   | From 2034     | 116        |
| Ngawha6      | 25       | KOE110   | From 2034     | 0          |
| TOTAL        | 1010     |          |               |            |

Table 72: Geothermal specific generation opportunities assumptions

# 14.5 Green peakers

Green peaker specific generation opportunities assumptions use the generic CAPEX, FOM and VOM from section 6.6, and add:

| Name         | Capacity | Location | Available     |
|--------------|----------|----------|---------------|
| Name         | Max MW   | GIP      | Start of year |
| HLY_BioPkr1  | 500      | HLY220   | For 2035      |
| SFD_BioPkr   | 200      | SFD220   | From 2035     |
| OTOBioPkr_s1 | 120      | OTO220   | From 2030     |
| OTOBioPkr_s2 | 120      | OTO220   | From 2030     |
| OTOBioPkr_s3 | 120      | OTO220   | From 2030     |
| HLY_BioPkr2  | 1000     | HLY220   | From 2035     |
| TOTAL        | 2060     |          |               |

Table 73: Green peaker specific generation opportunities assumptions